Browsing by Author "Mngomezulu, Mangaliso Moses."
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Solar flare recurrence prediction & visual recognition.(2024) Mngomezulu, Mangaliso Moses.; Gwetu, Mandlenkosi Victor.; Fonou-Dombeu, Jean Vincent.Solar flares are intense outbursts of radiation observable in the photosphere. The radiation flux is measured in W/m2. Solar flares can kill astronauts, disrupt electrical power grids, and interrupt satellite-dependent technologies. They threaten human survival and the efficiency of technology. The reliability of solar flare prediction models is often undermined by the stochastic nature of solar flare occurrence as shown in previous studies. The Geostationary Operational Environmental Satellite (GOES) system classifies solar flares based on their radiation flux. This study investigated how Recurrent Neural Network (RNN) models compare to their ensembles when predicting flares that emit at least 10−6W/m2 of radiation flux, known as ≥C class flares. A Long-Short Term Memory (LSTM) and Simple RNN homogeneous ensemble achieved a similar performance with a tied True Skill Statistic (TSS) score of 70 ± 1.5%. Calibration curves showed that ensembles are more reliable. The balanced accuracies of the Simple RNN Ensemble and LSTM are both 85% with f1-scores of 79% and 77% respectively. Furthermore, this study proposed a framework that shows how objective function reparameterization can be used to improve binary (≥C or