Browsing by Author "Namayanja, Proscovia."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item The eigen-chromatic ratio of classes of graphs : molecular stability, asymptotes and area.(2017) Mayala, Roger Mbonga.; Winter, Paul August.; Namayanja, Proscovia.This dissertation involves combining the two concepts of energy and the chromatic number of classes of graphs into a new ratio, the eigen-chromatic ratio of a graph G. Associated with this ratio is the importance of its asymptotic convergence in applications, as well as the idea of area involving the Rieman integral of this ratio, when it is a function of the order n of the graph G belonging to a class of graphs. The energy of a graph G, is the sum of the absolute values of the eigenvalues associated with the adjacency matrix of G, and its importance has found its way into many areas of research in graph theory. The chromatic number of a graph G, is the least number of colours required to colour the vertices of the graph, so that no two adjacent vertices receive the same colour. The importance of ratios in graph theory is evident by the vast amount of research articles: Expanders, The central ratio of a graph, Eigen-pair ratio of classes of graphs , Independence and Hall ratios, Tree-cover ratio of graphs, Eigen-energy formation ratio, The eigen-complete difference ratio, The chromatic-cover ratio and "Graph theory and calculus: ratios of classes of graphs". We combine the two concepts of energy and chromatic number (which involves the order n of the graph G) in a ratio, called the eigen-chromatic ratio of a graph. The chromatic number associated with the molecular graph (the atoms are vertices and edges are bonds between the atoms) would involve the partitioning of the atoms into the smallest number of sets of like atoms so that like atoms are not bonded. This ratio would allow for the investigation of the effect of the energy on the atomic partition, when a large number of atoms are involved. The complete graph is associated with the value 1 2 when the eigen-chromatic ratio is investigated when a large number of atoms are involved; this has allowed for the investigation of molecular stability associated with the idea of hypo/hyper energetic graphs. Attaching the average degree to the Riemann integral of this ratio (as a function of n) would result in an area analogue for investigation. Once the ratio is defned the objective is to find the eigen-chromatic ratio of various well known classes of graphs such as the complete graph, bipartite graphs, star graphs with rays of length two, wheels, paths, cycles, dual star graphs, lollipop graphs and caterpillar graphs. Once the ratio of each class of graph are determined the asymptote and area of this ratio are determined and conclusions and conjectures inferred.Item Long time behaviour of population models.(2010) Namayanja, Proscovia.; Banasiak, Jacek.; Willie, Robert.Non-negative matrices arise naturally in population models. In this thesis, we look at the theory of such matrices and we study the Perron-Frobenius type theorems regarding their spectral properties. We use these theorems to investigate the asymptotic behaviour of solutions to continuous time problems arising in population biology. In particular, we provide a description of long-time behaviour of populations depending on the nature of the associated matrix. Finally, we describe a few applications to population biology.Item Transport on network structures.(2013) Namayanja, Proscovia.; Banasiak, Jacek.This thesis is dedicated to the study of flows on a network. In the first part of the work, we describe notation and give the necessary results from graph theory and operator theory that will be used in the rest of the thesis. Next, we consider the flow of particles between vertices along an edge, which occurs instantaneously, and this flow is described by a system of first order ordinary differential equations. For this system, we extend the results of Perthame [48] to arbitrary nonnegative off-diagonal matrices (ML matrices). In particular, we show that the results that were obtained in [48] for positive off diagonal matrices hold for irreducible ML matrices. For reducible matrices, the results in [48], presented in the same form are only satisfied in certain invariant subspaces and do not hold for the whole matrix space in general. Next, we consider a system of transport equations on a network with Kirchoff-type conditions which allow for amplification and/or absorption at the boundary, and extend the results obtained in [33] to connected graphs with no sinks. We prove that the abstract Cauchy problem associated with the flow problem generates a strongly continuous semigroup provided the network has no sinks. We also prove that the acyclic part of the graph will be depleted in finite time, explicitly given by the length of the longest path in the acyclic part.