Browsing by Author "Ranchobe, Nthabeleng."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item The C3-V4 region is a major target of autologous neutralizing antibodies in human immunodeficiency virus type 1 subtype C Infection.(American Society for Microbiology., 2008) Moore, Penelope L.; Gray, Elin Solomonovna.; Choge, Isaac Ang'Ang'A.; Ranchobe, Nthabeleng.; Mlisana, Koleka Patience.; Abdool Karim, Salim Safurdeen.; Williamson, Carolyn.; Morris, Lynn.The early autologous neutralizing antibody response in human immunodeficiency virus type 1 (HIV-1) subtype C infections is often characterized by high titers, but the response is type specific with little to no cross-neutralizing activity. The specificities of these early neutralizing antibodies are not known; however, the type specificity suggests that they may target the variable regions of the envelope. Here, we show that cross-reactive anti-V3 antibodies developed within 3 to 12 weeks in six individuals but did not mediate autologous neutralization. Using a series of chimeric viruses, we found that antibodies directed at the V1V2, V4, and V5 regions contributed to autologous neutralization in some individuals, with V1V2 playing a more substantial role. However, these antibodies did not account for the total neutralizing capacity of these sera against the early autologous virus. Antibodies directed against the C3-V4 region were involved in autologous neutralization in all four sera studied. In two sera, transfer of the C3-V4 region rendered the chimera as sensitive to antibody neutralization as the parental virus. Although the C3 region, which contains the highly variable α2-helix was not a direct target in most cases, it contributed to the formation of neutralization epitopes as substitution of this region resulted in neutralization resistance. These data suggest that the C3 and V4 regions combine to form important structural motifs and that epitopes in this region are major targets of the early autologous neutralizing response in HIV-1 subtype C infection.Item Limited Neutralizing Antibody Specificities Drive Neutralization Escape in Early HIV-1 Subtype C Infection.(Plos, 2009) Moore, Penelope L.; Ranchobe, Nthabeleng.; Lambson, Bronwen Elizabeth.; Gray, Elin Solomonovna.; Cave, Eleanor.; Abrahams, Melissa-Rose.; Bandawe, Gama P.; Mlisana, Koleka Patience.; Abdool Karim, Salim Safurdeen.; Williamson, Carolyn.; Morris, Lynn.We previously showed that HIV-1 subtype C viruses elicit potent but highly type-specific neutralizing antibodies (nAb) within the first year of infection. In order to determine the specificity and evolution of these autologous nAbs, we examined neutralization escape in four individuals whose responses against the earliest envelope differed in magnitude and potency. Neutralization escape occurred in all participants, with later viruses showing decreased sensitivity to contemporaneous sera, although they retained sensitivity to new nAb responses. Early nAb responses were very restricted, occurring sequentially and targeting only two regions of the envelope. In V1V2, limited amino acid changes often involving indels or glycans, mediated partial or complete escape, with nAbs targeting the V1V2 region directly in 2 cases. The alpha-2 helix of C3 was also a nAb target, with neutralization escape associated with changes to positively charged residues. In one individual, relatively high titers of anti-C3 nAbs were required to drive genetic escape, taking up to 7 weeks for the resistant variant to predominate. Thereafter titers waned but were still measurable. Development of this single anti-C3 nAb specificity was associated with a 7-fold drop in HIV-1 viral load and a 4-fold rebound as the escape mutation emerged. Overall, our data suggest the development of a very limited number of neutralizing antibody specificities during the early stages of HIV-1 subtype C infection, with temporal fluctuations in specificities as escape occurs. While the mechanism of neutralization escape appears to vary between individuals, the involvement of limited regions suggests there might be common vulnerabilities in the HIV-1 subtype C transmitted envelope.Item Multiple pathways of escape from HIV broadly cross-neutralizing V2-dependent antibodies.(American Society for Microbiology., 2012) Moore, Penelope L.; Sheward, Daniel J.; Nonyane, Molati.; Ranchobe, Nthabeleng.; Hermanus, Tandile.; Gray, Elin Solomonovna.; Abdool Karim, Salim Safurdeen.; Williamson, Carolyn.; Morris, Lynn.Broadly cross-neutralizing (BCN) antibodies are likely to be critical for an effective HIV vaccine. However, the ontogeny of such antibodies and their relationship with autologous viral evolution is unclear. Here, we characterized viral evolution in CAP256, a subtype C-infected individual who developed potent BCN antibodies targeting positions R166 and K169 in the V2 region. CAP256 was superinfected at 3 months postinfection with a virus that was highly sensitive to BCN V2-dependent monoclonal antibodies. The autologous neutralizing response in CAP256 was directed at V1V2, reaching extremely high titers (>1:40,000) against the superinfecting virus at 42 weeks, just 11 weeks prior to the development of the BCN response targeting the same region. Recombination between the primary and superinfecting viruses, especially in V2 and gp41, resulted in two distinct lineages by 4 years postinfection. Although neutralization of some CAP256 clones by plasma from as much as 2 years earlier suggested incomplete viral escape, nonetheless titers against later clones were reduced at least 40-fold to less than 1:1,000. Escape mutations were identified in each lineage, either at R166 or at K169, suggesting that strain-specific and BCN antibodies targeted overlapping epitopes. Furthermore, the early dependence of CAP256 neutralizing antibodies on the N160 glycan decreased with the onset of neutralization breadth, indicating a change in specificity. These data suggest rapid maturation, within 11 weeks, of CAP256 strain-specific antibodies to acquire breadth, with implications for the vaccine elicitation of BCN V2-dependent antibodies. Overall these studies demonstrate that ongoing viral escape is possible, even from BCN antibodies.Item Potent and Broad Neutralization of HIV-1 Subtype C by Plasma Antibodies Targeting a Quaternary Epitope Including Residues in the V2 Loop.(American Society for Microbiology., 2010) Moore, Penelope L.; Gray, Elin Solomonovna.; Sheward, Daniel J.; Madiga, Maphuti C.; Ranchobe, Nthabeleng.; Honnen, William J.; Nonyane, Molati.; Tumba, Nancy Lola.; Hermanus, Tandile.; Sibeko, Sengeziwe.; Mlisana, Koleka Patience.; Abdool Karim, Salim Safurdeen.; Williamson, Carolyn.; Pinter, Abraham.; Morris, Lynn.; Lai, Zhong.The targets of broadly cross-neutralizing (BCN) antibodies are of great interest in the HIV vaccine field. We have identified a subtype C HIV-1-superinfected individual, CAP256, with high-level BCN activity, and characterized the antibody specificity mediating breadth. CAP256 developed potent BCN activity peaking at 3 years postinfection, neutralizing 32 (76%) of 42 heterologous viruses, with titers of antibodies against some viruses exceeding 1:10,000. CAP256 showed a subtype bias, preferentially neutralizing subtype C and A viruses over subtype B viruses. CAP256 BCN serum targeted a quaternary epitope which included the V1V2 region. Further mapping identified residues F159, N160, L165, R166, D167, K169, and K171 (forming the FN/LRD-K-K motif) in the V2 region as crucial to the CAP256 epitope. However, the fine specificity of the BCN response varied over time and, while consistently dependent on R166 and K169, became gradually less dependent on D167 and K171, possibly contributing to the incremental increase in breadth over 4 years. The presence of an intact FN/LRD-K-K motif in heterologous viruses was associated with sensitivity, although the length of the adjacent V1 loop modulated the degree of sensitivity, with a shorter V1 region significantly associated with higher titers. Repair of the FN/LRD-K-K motif in resistant heterologous viruses conferred sensitivity, with titers sometimes exceeding 1:10,000. Comparison of the CAP256 epitope with that of the PG9/PG16 monoclonal antibodies suggested that these epitopes overlapped, adding to the mounting evidence that this may represent a common neutralization target that should be further investigated as a potential vaccine candidate.