Mathematics and Computer Science Education
Permanent URI for this communityhttps://hdl.handle.net/10413/7137
Browse
Browsing Mathematics and Computer Science Education by Date Accessioned
Now showing 1 - 20 of 186
- Results Per Page
- Sort Options
Item Dynamics of dissipative gravitational collapse.(2008) Naidu, Nolene Ferrari.; Maharaj, Sunil Dutt.; Govender, Megandren.In this study we generate the matching conditions for a spherically symmetric radiating star in the presence of shear. Two new exact solutions to the Einstein held equations are presented which model a relativistic radiating sphere. We examine the role of anisotropy in the thermal evolution of a radiating star undergoing continued dissipative gravitational collapse in the presence of shear. Our model was the first study to incorporate both shear and pressure anisotropy, and these results were published in 2006. The physical viability of a recently proposed model of a shear-free spherically symmetric star undergoing gravitational collapse without the formation of a horizon is investigated. These original results were published in 2007. The temperature profiles of both models are studied within the framework of extended irreversible thermodynamics.Item A simulation modeling approach to aid research into the control of a stalk-borer in the South African Sugar Industry.(2008) Horton, Petrovious Mitchell.; Sibanda, Precious.; Hearne, John W.; Conlong, Desmond Edward.; Apaloo, Joseph.The control of the African stalk borer Eldana saccharina Walker (Lepidoptera: Pyralidae) in sugarcane fields of KwaZulu-Natal, South Africa has proved problematical. Researchers at the South African Sugarcane Research Institute (SASRI) have since 1974 been intensively investigating various means of controlling the pest. Among the methods of control currently being investigated are biological control, chemical control, production of more resistant varieties and crop management. These investigations, however, require many years of experimentation before any conclusions can be made. In order to aid the research currently being carried out in the Entomology Department at SASRI (to investigate biological control strategies, insecticide application strategies and the carry-over decision), a simulation model of E. saccharina growth in sugarcane has been formulated. The model is cohort-based and includes the effect of temperature on the physiological development of individuals in each life-stage of the insect. It also takes into account the effect of the condition of sugarcane on the rate of E. saccharina infestation, by making use of output from the sugarcane growth model CANEGRO. Further, a crop damage index is defined that gives an indication of the history of E. saccharina infestation levels during the sugarcane’s growth period. It is linked to the physiological activity of the borer during the period spent feeding on the stalk tissue. The damage index can further be translated into length of stalks bored and hence the percentage of the stalk length bored can be calculated at each point in the simulation using the total length of stalks calculated in the CANEGRO model. Using an industry accepted relationship between percent stalks damaged and reduction in sucrose content of the crop, reductions in losses in the relative value of the crop when the various control measures are implemented can be compared. Relationships between the reduction in percent stalk length bored (and hence gains in the relative value of the crop) and the various control strategies are obtained.Item Realistic charged stellar models(2007) Komathiraj, Kalikkuddy.; Maharaj, Sunil Dutt.In this thesis we seek exact solutions to the isotropic Einstien-Maxwell system that model the interior of relativistic stars. The field equations are transformed to a simpler form using the transformation of Durgapal and Bannerji (1983); the integration of the system is reduced to solving the condition of pressure isotropy. This condition is a recurrence relation with variable rational coe±cients which can be solved in general. New classes of solutions of linearly independent functions are obtained in terms of special functions and elementary functions for different spatial geometries. Our results contain models found previously including the superdense Tikekar (1990) neutron star model, the uncharged isotropic Maharaj and Leach (1996) solutions, the Finch and Skea (1989) model and the Durgapal and Bannerji (1983) superdense neutron star. Our general class of solutions also contain charged relativistic spheres found previously, including the model of Hansraj and Maharaj (2006) and the model of Thirukkanesh and Maharaj (2006). In addition, two exact analytical solutions describing the interior of a charged strange quark star are obtained by applying the MIT bag equation of state. We regain the Mak and Harko (2004) solution for a charged quark star as a special case.Item The pricing theory of Asian options.(2007) Mkhize, Ngenisile Grace Zanele; Xu, Hongjun.An Asian option is an example of exotic options. Its payoff depends on the average of the underlying asset prices. The average may be over the entire time period between initiation and expiration or may be over some period of time that begins later than the initiation of the option and ends with the options expiration. The average may be from continuous sampling or may be from discrete sampling. The primary reason to base an option payoff on an average asset price is to make it more difficult for anyone to significantly affect the payoff by manipulation of the underlying asset price. The price of Asian options is not known in closed form, in general, if the arithmetic average is taken into effect. In this dissertation, we shall investigate the pricing theory for Asian options. After a brief introduction to the Black-Scholes theory, we derive the partial differential equations for the value process of an Asian option to satisfy. We do this in several approaches, including the usual extension to Asian options of the Black-Scholes, and the sophisticated martingale approach. Both fixed and floating strike are considered. In the case of the geometric average, we derive a closed form solution for the Asian option. Moreover, we investigate the Asian option price theory under stochastic volatility which is a recent trend in the study of path-dependent option theory.Item Coagulation-fragmentation dynamics in size and position structured population models.(2008) Noutchie, Suares Cloves Oukouomi.; Banasiak, Jacek.One of the most interesting features of fragmentation models is a possibility to breachItem New analytical stellar models in general relativity.(2009) Thirukkanesh, Suntharalingam.; Maharaj, Sunil Dutt.We present new exact solutions to the Einstein and Einstein-Maxwell field equations that model the interior of neutral, charged and radiating stars. Several new classes of solutions in static spherically symmetric interior spacetimes are found in the presence of charge. These correspond to isotropic matter with a specified electric field intensity. Our solutions are found by choosing different rational forms for one of the gravitational potentials and a particular form for the electric field. The models generated contain results found previously including Finch and Skea (1989) neutron stars, Durgapal and Bannerji (1983) dense stars, Tikekar (1990) superdense stars in the limit of vanishing charge. Then we study the general situation of a compact relativistic object with anisotropic pressures in the presence of the electromagnetic field. We assume the equation of state is linear so that the model may be applied to strange stars with quark matter and dark energy stars. Several new classes of exact solutions are found, and we show that the densities and masses are consistent with real stars. We regain as special cases the Lobo (2006) dark energy stars, the Sharma and Maharaj (2007) strange stars and the realistic isothermal universes of Saslaw et al (1996). In addition, we consider relativistic radiating stars undergoing gravitational collapse when the fluid particles are in geodesic motion. We transform the governing equation into Bernoulli, Riccati and confluent hypergeometric equations. These admit an infinite family of solutions in terms of simple elementary functions and special functions. Particular models contain the Minkowski spacetime and the Friedmann dust spacetime as limiting cases. Finally, we model the radiating star with shear, acceleration and expansion in the presence of anisotropic pressures. We obtain several classes of new solutions in terms of arbitrary functions in temporal and radial coordinates by rewriting the junction condition in the form of a Riccati equation. A brief physical analysis indicates that these models are physically reasonable.Item On the logics of algebra.(2008) Barbour, Graham.; Amery, Gareth.; Raftery, James Gordon.We present and consider a number of logics that arise naturally from universal algebraic considerations, but which are ‘inherently unalgebraizable’ in the sense of [BP89a], essentially because they have no theo- rems. Of particular interest is the membership logic of a quasivariety, which is determined by its theorems, which are the relative congruence classes of the term algebra together with the empty-set in the case that the quasivariety is non-trivial. The membership logic arises by a more general technique developed in this text, for inducing deductive systems from closed systems on the free algebras of quasivarieties. In order to formalize this technique, we develop a theory of logics over constructs, where constructs are concrete categories. With this theory in place, we are able to view a closed system over an algebra as a logic, and in particular a structural logic, structural with respect to a suitable construct, typically the construct con- sisting of all algebras in a quasivariety and all algebra homomorphisms between these algebras. Of course, in such a case, none of these logics are generally sentential (i.e., structural and finitary deductive systems in the sense of [BP89a]), since the formulae of sentential logics arise from the terms of the absolutely free term algebra, which is generally not a member of the quasivariety under interest. In such cases, where the term algebra is not a member of a quasivariety, the free algebra of the quasivariety on denumerably countable free generators takes on the role played by the term algebra in sentential logics. Many of the logics that we encounter in this text arise most naturally as finitary logics on this free algebra of the quasivariety and generally are structural with respect to the quasivariety. We call such logics canons, and show how such structural canons induce sentential calculi, which we call the induced ideal ; the filters of the ideal on the free algebra are precisely the theories of the canon. The membership logic is the ideal of the cannon whose theories are the relative congruence classes on the free algebra. The primary aim of this thesis is to provide a unifying framework for logics of this type which extends the Blok-Pigozzi theory of elementarily algebraizable (and protoalgebraic) deductive systems. In this extension there are two parameters: a set of formulae and a variable. When the former is empty or consists of theorems, the Blok-Pigozzi theory is recovered, and the variable is redundant. For the membership logic, the appropriate variant of equivalent algebraic semantics encompasses the relatively congruence regular quasivarieties. These results have appeared in [BR03]. The secondary aim of this thesis is to analyse our theory of parameterized algebraization from a non- parameterized perspective. To this end, we develop a theory of protoalgebraic logics over constructs and equivalence between logics from different constructs, which we then use to explain the results we obtained in our parameterized theories of protoalgebraicity, algebraic semantics and equivalent algebraic semantics. We relate this theory to the theory of deductively equivalent -institutions [Vou03], and as a consequence obtain a number of improved and new results in the field of categorical abstract algebraic logic. We also use our theory of protoalgebraic logics over constructs to obtain a new and simpler characterization of structural finitary n-deductive systems, which we then use to close the program begun in [BR99], by extending those results for 1-deductive systems to n-deductive systems, and in particular characterizing the protoalgebraicity of the sentential n-deductive system Sn(K,N), which is the natural extension of the 1-deductive system S(K, ) introduce in [BR99], in terms of the quasivariety K having hK,Ni-coherent N-classes (we cannot see how to obtain this result from the standard characterization of protoalgebraic n- deductive systems of [Pal03], which is very complex). With respect to this program of completing [BR99], we also show that a quasivariety K is an equivalent algebraic semantics for a n-deductive system with defining equations N iff K is hK,Ni-regular; a notion of regularity that we introduce and characterize by a quasi-Mal’cev condition. The third aim of this text is to unify as many disparate arguments and notions in algebraic logic under the banner of continuous translations between closed systems, where our use of the term continuous is in the topological sense rather than in the order-theoretic sense, and, where possible, to give elementary, i.e. first order, definitions and proofs. To this end, we show that closed systems, closure operators and conse- quence relations can all be characterized elementarily over orders, and put into one-to-one correspondence that reflects exactly, the standard correspondences between the well-known concrete notions with the same name. We show that when the order is the complete power order over a set, then these elementary structures coincide with their well-known counterparts with the same name. We also introduce two other elementary structures over orders, namely the closed equivalence relation and something we term the proto-Leibniz relation; these elementary structures are also in one-to-one correspondence with the earlier mentioned structures; we have not seen concrete versions of these structures. We then characterize the structure homomorphisms between these structures, as well as considering galois relations between them; galois relations are pairs of order-preserving function in opposite directions; we call these translations, and they are elementary notions. We demonstrate how notions as disparate as structurality, semantics, algebraic semantics, the filter correspondence property, filters, models, semantic consequence, protoalge- braicity and even the logic S(K, ) of [BR99] and our logic Sn(K,N), all fall within this framework, as does much of our parameterized theory and much of the theory of -institutions. A brief summary of the standard theory of deductive systems and their algebraization is provided for the reader unfamiliar with algebraic logics, as well as the necessary background material, including construct and category theory, the theory of structures and algebras, and the model theory of structures with and without equality.Item Global embeddings of pseudo-Riemannian spaces.(2007) Moodley, Jothi.; Amery, Gareth.Motivated by various higher dimensional theories in high-energy-physics and cosmology, we consider the local and global isometric embeddings of pseudo-Riemannian manifolds into manifolds of higher dimensions. We provide the necessary background in general relativity, topology and differential geometry, and present the technique for local isometric embeddings. Since an understanding of the local results is key to the development of global embeddings, we review some local existence theorems for general pseudo-Riemannian embedding spaces. In order to gain insight we recapitulate the formalism required to embed static spherically symmetric space-times into fivedimensional Einstein spaces, and explicitly treat some special cases, obtaining local and isometric embeddings for the Reissner-Nordstr¨om space-time, as well as the null geometry of the global monopole metric. We also comment on existence theorems for Euclidean embedding spaces. In a recent result, it is claimed (Katzourakis 2005a) that any analytic n-dimensional space M may be globally embedded into an Einstein space M × F (F an analytic real-valued one-dimensional field). As a corollary, it is claimed that all product spaces are Einsteinian. We demonstrate that this construction for the embedding space is in fact limited to particular types of embedded spaces. We analyze this particular construction for global embeddings into Einstein spaces, uncovering a crucial misunderstanding with regard to the form of the local embedding. We elucidate the impact of this misapprehension on the subsequent proof, and amend the given construction so that it applies to all embedded spaces as well as to embedding spaces of arbitrary curvature. This study is presented as new theorems.Item Embedding theorems and finiteness properties for residuated structures and substructural logics(2008) Hsieh, Ai-Ni.; Raftery, James Gordon.Paper 1. This paper establishes several algebraic embedding theorems, each of which asserts that a certain kind of residuated structure can be embedded into a richer one. In almost all cases, the original structure has a compatible involution, which must be preserved by the embedding. The results, in conjunction with previous findings, yield separative axiomatizations of the deducibility relations of various substructural formal systems having double negation and contraposition axioms. The separation theorems go somewhat further than earlier ones in the literature, which either treated fewer subsignatures or focussed on the conservation of theorems only. Paper 2. It is proved that the variety of relevant disjunction lattices has the finite embeddability property (FEP). It follows that Avron’s relevance logic RMImin has a strong form of the finite model property, so it has a solvable deducibility problem. This strengthens Avron’s result that RMImin is decidable. Paper 3. An idempotent residuated po-monoid is semiconic if it is a subdirect product of algebras in which the monoid identity t is comparable with all other elements. It is proved that the quasivariety SCIP of all semiconic idempotent commutative residuated po-monoids is locally finite. The lattice-ordered members of this class form a variety SCIL, which is not locally finite, but it is proved that SCIL has the FEP. More generally, for every relative subvariety K of SCIP, the lattice-ordered members of K have the FEP. This gives a unified explanation of the strong finite model property for a range of logical systems. It is also proved that SCIL has continuously many semisimple subvarieties, and that the involutive algebras in SCIL are subdirect products of chains. Paper 4. Anderson and Belnap’s implicational system RMO can be extended conservatively by the usual axioms for fusion and for the Ackermann truth constant t. The resulting system RMO is algebraized by the quasivariety IP of all idempotent commutative residuated po-monoids. Thus, the axiomatic extensions of RMO are in one-to-one correspondence with the relative subvarieties of IP. It is proved here that a relative subvariety of IP consists of semiconic algebras if and only if it satisfies x (x t) x. Since the semiconic algebras in IP are locally finite, it follows that when an axiomatic extension of RMO has ((p t) p) p among its theorems, then it is locally tabular. In particular, such an extension is strongly decidable, provided that it is finitely axiomatized.Item A comparative study of collocation methods for the numerical solution of differential equations.(2008) Kajotoni, Margaret Modupe.; Parumasur, Nabendra.; Singh, Pravin.The collocation method for solving ordinary differential equations is examined. A detailed comparison with other weighted residual methods is made. The orthogonal collocation method is compared to the collocation method and the advantage of the former is illustrated. The sensitivity of the orthogonal collocation method to different parameters is studied. Orthogonal collocation on finite elements is used to solve an ordinary differential equation and its superiority over the orthogonal collocation method is shown. The orthogonal collocation on finite elements is also used to solve a partial differential equation from chemical kinetics. The results agree remarkably with those from the literature.Item Inhomogeneous solutions to the Einstein equations.(2007) Govender, Gabriel.; Maharaj, Sunil Dutt.In this dissertation we consider spherically symmetric gravitational fields that arise in relativistic astrophysics and cosmology. We first present a general review of static spherically symmetric spacetimes. aand highlight a particular class of exact solutions of the Einstein-Maxwell system for charged spheres. In the case of shear-free spacetimes with heat flow, the integration of the system is reduced to solving the condition of pressure isotropy. This condition is a second order linear differential equation with variable coefficients. By choosing particular forms for the gravitational potentials, sev-eral classes of new solutions are generated. We regain known solutions corresponding to coniformal flatness when tidal forces are absent. We also consider expanding, accelerating and shearing models when the heat flux is not present. A new general class of models is found. This new class of shearing solutions contains the model of Maharaj et al (1993) when a parameter is set to zero. Our new solution does not contain a singularity at the stellar centre, and it is therefore useful in modelling the interior of stars. Finally, we demonstrate that the shearing models obtained by Markund and Bradley (1999) do not satisfy the Einstein field equations.Item Exact models for radiating relativistic stars.(2007) Rajah, Suryakumari Surversperi.; Maharaj, Sunil Dutt.In this thesis, we seek exact solutions for the interior of a radiating relativistic star undergoing gravitational collapse. The spherically symmetric interior spacetime, when matched with the exterior radiating Vaidya spacetime, at the boundary of the star, yields the governing equation describing the gravitational behaviour of the collapsing star. The investigation of the model hinges on the solution of the governing equation at the boundary. We first examine shear-free models which are conformally flat. The boundary condition is transformed to an Abel equation and several new solutions are generated. We then study collapse with shear in geodesic motion. Two classes of solutions are generated which are regular at the stellar centre. Our treatment extends the results of Naidu et al (2006) which had the undesirable feature of a singularity at the centre of the star. In an attempt to find more general models, we transform the fundamental equation to a Riccati equation. Two general classes of solution are found and are used to study the thermal evolution in the causal theory of thermodynamics. These solutions are shown to reduce to the Friedmann dust solution in the absence of heat flow. Furthermore, we obtain new categories of solutions for the case of gravitational collapse with expansion, shear and acceleration of the stellar fluid. This is achieved by transforming the boundary condition into a Riccati equation. In special cases the Bernoulli equation is regained. The solutions are given in terms of elementary functions and they permit the investigation of the physical features of radiative stellar collapse.Item Multi-parameter perturbation analysis of a second grade fluid flow past an oscillating infinite plate.(2009) Habyarimana, Faustin.; Sibanda, Precious.In this dissertation we consider the two dimensional flow of an incompressible and electrically conducting second grade fluid past a vertical porous plate with constant suction. The flow is permeated by a uniform transverse magnetic field. The aim of this study is to use the multi-parameter perturbation technique to study the effects of Eckert numbers on the flow of a pulsatile second grade fluid along a vertical plate. We further aim to investigate the effects of other fluid and physical parameters such as the Prandtl numbers, Hartmann numbers, viscoelastic parameter, angular frequency and suction velocity on boundary layer velocity, temperature, skin friction and the rate of heat transfer. Similarity transformations are used to reduce the governing partial differential equations to ordinary differential equations. We used perturbation methods to solve the coupled ordinary differential equations for zero Eckert number and the multiparameter perturbation technique to solve the coupled ordinary differential equations for small viscoelastic parameters and Eckert numbers. It is found that increasing the Eckert number or the viscoelastic parameter enhances the boundary layer velocity while reducing the temperature, the rate of heat transfer and the skin-friction. The results for the boundary layer velocity and the temperature are presented graphically and discussed. The results for the rate of heat transfer in terms of the Nusselt number and the skin friction are tabulated and discussed. A good agreement is found between these results and other published research. The comparison between the results for zero Eckert numbers and small Eckert numbers is also presented graphically and discussed.Item Remediation of first-year mathematics students' algebra difficulties.(2009) Campbell, Anita.; Anderson, Trevor Ryan.; Christiansen, Iben Maj.; Ewer, John Patrick Graham.The pass rate of first-year university mathematics students at the University of KwaZulu-Natal (Pietermaritzburg Campus) has been low for many years. One cause may be weak algebra skills. At the time of this study, revision of high school algebra was not part of the major first year mathematics course. This study set out to investigate if it would be worthwhile to spend tutorial time on basic algebra when there is already an overcrowded calculus syllabus, or if students refresh their algebra skills sufficiently as they study first year mathematics. Since it was expected that remediation of algebra skills would be found to be worthwhile, two other questions were also investigated: Which remediation strategy is best? Which errors are the hardest to remediate? Five tutorial groups for Math 130 were randomly assigned one of four remediation strategies, or no remediation. Three variations of using cognitive conflict to change students’ misconceptions were used, as well as the strategy of practice. Pre- and post-tests in the form of multiple choice questionnaires with spaces for free responses were analysed. Comparisons between the remediated and non-remediated groups were made based on pre- and post-test results and Math 130 results. The most persistent errors were determined using an 8-category error classification developed for this purpose. The best improvement from pre- to post-test was 12.1% for the group remediated with cognitive conflict over 5 weeks with explanations from the tutor. Drill and practice gave the next-best improvement of 8.1%, followed by self-guided cognitive conflict over 5 weeks (7.8% improvement). A once-off intervention using cognitive conflict gave a 5.9% improvement. The group with no remediation improved by 2.3%. The results showed that the use of tutorintensive interventions more than doubled the improvement between pre-and post-tests but even after remediation, the highest group average was 80%, an unsatisfactory level for basic skills. The three most persistent errors were those involving technical or careless errors, errors from over-generalising and errors from applying a distorted algorithm, definition or theorem.Item Character tables of the general linear group and some of its subgroups(2008) Basheer, Ayoub Basheer Mohammed.; Moori, Jamshid.The aim of this dissertation is to describe the conjugacy classes and some of the ordinary irreducible characters of the nite general linear group GL(n, q); together with character tables of some of its subgroups. We study the structure of GL(n, q) and some of its important subgroups such as SL(n, q); UT(n, q); SUT(n, q); Z(GL(n, q)); Z(SL(n, q)); GL(n, q)0 ; SL(n, q)0 ; the Weyl group W and parabolic subgroups P : In addition, we also discuss the groups PGL(n, q); PSL(n, q) and the a ne group A (n, q); which are related to GL(n, q): The character tables of GL(2; q); SL(2; q); SUT(2; q) and UT(2; q) are constructed in this dissertation and examples in each case for q = 3 and q = 4 are supplied. A complete description for the conjugacy classes of GL(n, q) is given, where the theories of irreducible polynomials and partitions of i 2 f1; 2; ; ng form the atoms from where each conjugacy class of GL(n, q) is constructed. We give a special attention to some elements of GL(n, q); known as regular semisimple, where we count the number and orders of these elements. As an example we compute the conjugacy classes of GL(3; q): Characters of GL(n, q) appear in two series namely, principal and discrete series characters. The process of the parabolic induction is used to construct a large number of irreducible characters of GL(n, q) from characters of GL(n, q) for m < n: We study some particular characters such as Steinberg characters and cuspidal characters (characters of the discrete series). The latter ones are of particular interest since they form the atoms from where each character of GL(n, q) is constructed. These characters are parameterized in terms of the Galois orbits of non-decomposable characters of F q n: The values of the cuspidal characters on classes of GL(n, q) will be computed. We describe and list the full character table of GL(n, q): There exists a duality between the irreducible characters and conjugacy classes of GL(n, q); that is to each irreducible character, one can associate a conjugacy class of GL(n, q): Some aspects of this duality will be mentioned.Item Fischer-Clifford matrices of the generalized symmetric group and some associated groups.(2005) Zimba, Kenneth.; Moori, Jamshid.With the classification of finite simple groups having been completed in 1981, recent work in group theory has involved the study of the structures of simple groups. The character tables of maximal subgroups of simple groups give substantive information about these groups. Most of the maximal subgroups of simple groups are of extension type. Some of the maximal subgroups of simple groups contain constituents of the generalized symmetric groups. Here we shall be interested in discussing such groups which we may call groups associated with the generalized symmetric groups. There are several well developed methods for calculating the character tables of group extensions. However Fischer [17] has given an effective method for calculating the character tables of some group extensions including the generalized symmetric group B (m, n). Actually work on the characters of wreath products with permutation groups dates back to Specht's work [61], through the works of Osima [49] and Kerber [33]. And more recently other people have worked on characters of wreath products with symmetric groups, these amongst others include Darafshesh and Iranmanesh [14], List and Mahmoud [36], Puttaswamiah [52], Read [55, 56], Saeed-Ul-Islam [59] and Stembridge [64]. It is well known that the character table of the generalized symmetric group B(m, n), where m and n are positive integers, can be constructed in GAP [22] with B(m, n) considered as the wreath product of the cyclic group Zm of order m with the symmetric group Sn' For example Pfeiffer [50] has given programmes which compute the character tables of wreath products with symmetric groups in GAP. However it may be necessary to obtain the partial character table of a group in hand rather than its complete character table. Further due to limited workspace in GAP, the wreath product method can only be used to compute character tables of B(m, n) for small values of m and n. It is for these reasons amongst others that Fischer's method is sometimes used to construct the character tables of such groups. groups B(2, 6) and B(3, 5) of orders 46080 and 29160 is done here. We have also used Programme 5.2.4 to construct the Fischer-Clifford matrices of the groups B(2, 12) and B(4, 5) of orders 222 x 35 X 52 X 7 x 11 and 213 x 3 x 5 respectively. Due to lack of space here we have given the Fischer-Clifford matrices of B(2, 12) and B(4,5) on the compact disk submitted with this thesis. However note that these matrices are the equivalent form of the Fischer-Clifford matrices of B(2, 12) and B(4,5). In [35] R.J. List has presented a method for constructing the Fischer-Clifford matrices of group extensions of an irreducible constituent of the elementary abelian group 2n by a symmetric group. The other aim of our work is to adapt the combinatorial method in [5] to the construction of the Fischer-Clifford matrices of some group extensions associated with B(m, n), using a similar method as the one used in [35]. Examples are given on the application of this adaptation to some groups associated with the groups B(2, 6), B(3,3) and B(3, 5). In this thesis we have constructed the character tables of the groups B(2, 6) and B(3,5) and some group extensions associated with these two groups and B(3, 3). We have also constructed the character tables of the groups B(2, 12) and B(4, 5) in our work, these character tables are given on the compact disk submitted with this thesis. The correctness of all the character tables constructed in this thesis has been tested in GAP. The main working programmes (Programme 2.2.3, Programme 3.1.9, Programme 3.1.10, Programme 5.2.1, Programme 5.2.4 and Programme 5.2.2) are given on the compact disk submitted with this thesis. It is anticipated that with further improvements, a number of the programmes given here will be incorporated into GAP. Indeed with further research work the programmes given here should lead to an alternative programme for computing the character table of B(m, n).Item Stratification and domination in graphs.(2006) Maritz, J. E.; Henning, Michael Anthony.In a recent manuscript (Stratification and domination in graphs. Discrete Math. 272 (2003), 171-185) a new mathematical framework for studying domination is presented. It is shown that the domination number and many domination related parameters can be interpreted as restricted 2-stratifications or 2-colorings. This framework places the domination number in a new perspective and suggests many other parameters of a graph which are related in some way to the domination number. In this thesis, we continue this study of domination and stratification in graphs. Let F be a 2-stratified graph with one fixed blue vertex v specified. We say that F is rooted at the blue vertex v. An F-coloring of a graph G is a red-blue coloring of the vertices of G such that every blue vertex v of G belongs to a copy of F (not necessarily induced in G) rooted at v. The F-domination number yF(GQ of G is the minimum number of red vertices of G in an F-coloring of G. Chapter 1 is an introduction to the chapters that follow. In Chapter 2, we investigate the X-domination number of prisms when X is a 2-stratified 4-cycle rooted at a blue vertex where a prism is the cartesian product Cn x K2, n > 3, of a cycle Cn and a K2. In Chapter 3 we investigate the F-domination number when (i) F is a 2-stratified path P3 on three vertices rooted at a blue vertex which is an end-vertex of the F3 and is adjacent to a blue vertex and with the remaining vertex colored red. In particular, we show that for a tree of diameter at least three this parameter is at most two-thirds its order and we characterize the trees attaining this bound. (ii) We also investigate the F-domination number when F is a 2-stratified K3 rooted at a blue vertex and with exactly one red vertex. We show that if G is a connected graph of order n in which every edge is in a triangle, then for n sufficiently large this parameter is at most (n — /n)/2 and this bound is sharp. In Chapter 4, we further investigate the F-domination number when F is a 2- stratified path P3 on three vertices rooted at a blue vertex which is an end-vertex of the P3 and is adjacent to a blue vertex with the remaining vertex colored red. We show that for a connected graph of order n with minimum degree at least two this parameter is bounded above by (n —1)/2 with the exception of five graphs (one each of orders four, five and six and two of order eight). For n > 9, we characterize those graphs that achieve the upper bound of (n — l)/2. In Chapter 5, we define an f-coloring of a graph to be a red-blue coloring of the vertices such that every blue vertex is adjacent to a blue vertex and to a red vertex, with the red vertex itself adjacent to some other red vertex. The f-domination number yz{G) of a graph G is the minimum number of red vertices of G in an f-coloring of G. Let G be a connected graph of order n > 4 with minimum degree at least 2. We prove that (i) if G has maximum degree A where A 4 with maximum degree A where A 5 with maximum degree A where 3Item Applications of symmetry analysis to physically relevant differential equations.(2005) Kweyama, Mandelenkosi Christopher.; Govinder, Keshlan Sathasiva.; Maharaj, Sunil Dutt.We investigate the role of Lie symmetries in generating solutions to differential equations that arise in particular physical systems. We first provide an overview of the Lie analysis and review the relevant symmetry analysis of differential equations in general. The Lie symmetries of some simple ordinary differential equations are found t. illustrate the general method. Then we study the properties of particular ordinary differential equations that arise in astrophysics and cosmology using the Lie analysis of differential equations. Firstly, a system of differential equations arising in the model of a relativistic star is generated and a governing nonlinear equation is obtained for a linear equation of state. A comprehensive symmetry analysis is performed on this equation. Secondly, a second order nonlinear ordinary differential equation arising in the model of the early universe is described and a detailed symmetry analysis of this equation is undertaken. Our objective in each case is to find explicit Lie symmetry generators that may help in analysing the model.Item A classical approach for the analysis of generalized linear mixed models.(2004) Hammujuddy, Mohammad Jahvaid. ; Matthews, Glenda Beverley.Generalized linear mixed models (GLMMs) accommodate the study of overdispersion and correlation inherent in hierarchically structured data. These models are an extension of generalized linear models (GLMs) and linear mixed models (LMMs). The linear predictor of a GLM is extended to include an unobserved, albeit realized, vector of Gaussian distributed random effects. Conditional on these random effects, responses are assumed to be independent. The objective function for parameter estimation is an integrated quasi-likelihood (IQL) function which is often intractable since it may consist of high-dimensional integrals. Therefore, an exact maximum likelihood analysis is not feasible. The penalized quasi-likelihood (PQL) function, derived from a first-order Laplace expansion to the IQL about the optimum value of the random effects and under the assumption of slowly varying weights, is an approximate technique for statistical inference in GLMMs. Replacing the conditional weighted quasi-deviance function in the Laplace-approximated IQL by the generalized chi-squared statistic leads to a corrected profile quasilikelihood function for the restricted maximum likelihood (REML) estimation of dispersion components by Fisher scoring. Evaluation of mean parameters, for fixed dispersion components, by iterative weighted least squares (IWLS) yields joint estimates of fixed effects and random effects. Thus, the PQL criterion involves repeated fitting of a Gaussian LMM with a linked response vector and a conditional iterated weight matrix. In some instances, PQL estimates fail to converge to a neighbourhood of their true values. Bias-corrected PQL estimators (CPQL) have hence been proposed, using asymptotic analysis and simulation. The pseudo-likelihood algorithm is an alternative estimation procedure for GLMMs. Global score statistics for hypothesis testing of overdispersion, correlation and heterogeneity in GLMMs has been developed as well as individual score statistics for testing null dispersion components separately. A conditional mean squared error of prediction (CMSEP) has also been considered as a general measure of predictive uncertainty. Local influence measures for testing the robustness of parameter estimates, by inducing minor perturbations into GLMMs, are recent advances in the study of these models. Commercial statistical software is available for the analysis of GLMMs.Item Fischer-Clifford theory for split and non-split group extensions.(2001) Ali, Faryad.; Moori, Jamshid.The character table of a finite group provides considerable amount of information about the group, and hence is of great importance in Mathematics as well as in Physical Sciences. Most of the maximal subgroups of the finite simple groups and their automorphisms are of extensions of elementary abelian groups, so methods have been developed for calculating the character tables of extensions of elementary abelian groups. Character tables of finite groups can be constructed using various techniques. However Bernd Fischer presented a powerful and interesting technique for calculating the character tables of group extensions. This technique, which is known as the technique of the Fischer-Clifford matrices, derives its fundamentals from the Clifford theory. If G=N.G is an appropriate extension of N by G, the method involves the construction of a nonsingular matrix for each conjugacy class of G/N~G. The character table of G can then be determined from these Fischer-Clifford matrices and the character table of certain subgroups of G, called inertia factor groups. In this dissertation, we described the Fischer-Clifford theory and apply it to both split and non-split group extensions. First we apply the technique to the split extensions 2,7:Sp6(2) and 2,8:SP6(2) which are maximal subgroups of Sp8(2) and 2,8:08+(2) respectively. This technique has also been discussed and used by many other researchers, but applied only to split extensions or to the case when every irreducible character of N can be extended to an irreducible character of its inertia group in G. However the same method can not be used to construct character tables of certain non-split group extensions. In particular, it can not be applied to the non-split extensions of the forms 3,7.07(3) and 3,7.(0,7(3):2) which are maximal subgroups of Fischer's largest sporadic simple group Fi~24 and its automorphism group Fi24 respectively. In an attempt to generalize these methods to such type of non-split group extensions, we need to consider the projective representations and characters. We have shown that how the technique of Fischer-Clifford matrices can be applied to any such type of non-split extensions. However in order to apply this technique, the projective characters of the inertia factors must be known and these can be difficult to determine for some groups. We successfully applied the technique of Fischer-Clifford matrices and determined the Fischer-Clifford matrices and hence the character tables of the non-split extensions 3,7.0,7(3) and 3,7.(0,7(3):2). The character tables computed in this thesis have been accepted for incorporation into GAP and will be available in the latest versions.