Doctoral Degrees (Physics)
Permanent URI for this collectionhttps://hdl.handle.net/10413/6603
Browse
Browsing Doctoral Degrees (Physics) by Issue Date
Now showing 1 - 20 of 106
- Results Per Page
- Sort Options
Item Field and model studies of the nearshore circulation.(1967) Harris, Thomas Frank Wyndham.Investigations into the characteristics and underlying mechanism of the circulation of water near the shore are reported. The two main types of circulation, one a cellular system resulting from Haves propagated nearly normally to the shore, and the other an essentially alongshore flow associated with oblique waves, are treated separately. The cellular circulation studies were made in the field at Virginia Beach and more extensively in wave tanks. From the field experiments data were collected about the dimensions of the cells, the way in which the Hater circulated, the rate of exchance of surf zone water and the extent of recycling. A method for measuring the changes in the mean sea level over intervals of time greater than those of the wave periods, was developed. The model experiments carried out in uniform wave tanks showed that the cellular circulations could be well simulated. Measurements were made of the cell dimensions, the velocity of the longshore and rip currents, and of the recycling regime. A finding from the wave tank studies Has the presence of standing waves formed by transverse edge waves. The interaction of these standing waves with the gene rated waves normal to the shore could be the initial cause of rip currents and the cellular circulation. Studies of the alongshore system were made in the field only. A method for measuring the volume of flow of longshore currents was developed, tested, and applied. Calculated volumes of flow using a theory based on continuity and the solitary wave theory (as proposed by Inman and Bagnold) compared tolerably well with the field observations. The calculations of volume of flow required a knowledge of the wave height spectra in the surf. This was established by making wave height recordings in the between-breaker zone . It was found that the characteristics of the spectra compared reasonably well with those pr e dict ed by the Longuet-Higgins theory, previously assumed to apply to deep water waves only. A mechanism for the transition from cellular to alongshore system is proposed.Item Investigation of the fair weather electric field in the atmosphere.(1975) Muir, Michael Stilwell.No abstract available.Item The morphology of radiation damage in copper irradiated with neutrons at elevated temperatures.(1977) Kemm, Kelvin Richard.; Spalding, Dennis Raymond.This thesis is an investigation of the radiation damage morphology of high purity copper crystals irradiated with fast neutrons at temperatures in the range of 250C to 4OO C. At these high temperatures neutron damage is found to accumulate into large 3-dimensional rafts up to 100 um in size, and the well known homogeneous distribution of black dot damage which is characteristic of irradiations at lower temperatures is not observed. The characteristics and composition of the rafts of damage 0 at different temperatures in the range 250 C to 400 C have been compared and found to differ to a large extent. It has also been shown that the background areas between rafts contain a rather low density of damage at all temperatures studied. It is therefore concluded that many of the interstitial atoms formed during irradiation migrate over large distances through the crystal lattice to precipitate at the sites of the dislocations forming the large rafts, and so denuded inter-raft areas are left behind. It is proposed that these large rafts originate from grown in dislocations present in the crystals before irradiationItem The analysis and optimization of electrostatic electron optical lenses with rotational symmetry, through use of orthogonal functions.(1978) Van der Merwe, Johannes Petrus.; Walker, Anthony David Mortimer.; Spalding, Dennis Raymond.No abstract available.Item Aurora and associated VLF phenomena.(1978) Duthie, Desmond D.; Scourfield, Malcolm W. J.Observations have been made at Sanae (gm. lat. -63,71°) on occurring auroral forms, (diffuse and pulsating aurora), and simultaneous occurring VLF phenomena, (whistlers and auroral hiss) . Two studies are presented in this thesis. (a) A comparison of the positions of auroral forms and the positions of field lines, along which whistlers propagate, is made and it is found that: (i) Diffuse aurora occurs on closed field lines and indirect evidence shows that this is also the case for pulsating aurora. (ii) For two periods of data the separation of diffuse aurora from the plasmapause ranges from < 0,9 L to < 0,2 L but during a third period, the diffuse aurora lies, at least partially, within the plasmasphere. (b) An investigation into the association between pulsating aurora and pulsating auroral hiss is made and it is shown that: (i) A common identical pulsation period of 0,75 s and high coherency exists between the light intensity of an auroral patch and the intensity of the associated pulsating auroral hiss. This suggests a wave-particle interaction as a common modulation mechanism. (ii) Cyclotron instability (gyroresonance) or Cerenkov radiation mechanisms occurring in the equatorial plane do not account for the time delays, typically between 0,90 s and 0,157 s, found to be present between, the two phenomena, where the incident auroral electrons, responsible for the auroral patch light intensity, are observed to arrive before the auroral hiss emissions. The results of the analysis in (a) are reported in The Journal of Atmospheric and Terrestrial Physics, 39, 1429, 1977.Item The density dependence of the refractivity of gases.(1978) Burns, Robert Charles.; Graham, Clive.Item Towards an objective interpretation of quanum mechanics.(1978) Wang, Derek Trygve.; Bedford, Donald.Abstract on PDF file.Item Sound transmission analysis by sound intensimetry.(1985) Van Zyl, Barend Gideon.; Broadhurst, Anthony D.This thesis represents the development and evaluation of a theory for sound transmission analysis by sound intensimetry. In the context of this study sound transmission analysis is understood to embrace the following: (1) The measurement of sound reduction indices. (2) Diagnostic analysis of sound transmission through panels and structures. The sound intensity method is examined against the theoretical background of the classic two-room method which forms the basis of currently used international standards. The flanking problem, which is one of the principle limiting factors in the use of the classic method, is analyzed. The standard formulation of the intensity method is expanded to account for leakage error, boundary interference effects and calibration mismatch. It is shown that the commonly observed low-frequency discrepancy between intensity and classic method results is resolved by application of the Waterhouse correction. Sound absorption by the test object on the receiving side is shown to cause an error which increases with the flanking factor and with the fraction of the receiving room absorption located on the surface of the test object. Guidelines are developed for the assessment and control of absorption error in practical situations. Using the common mode rejection index as a performance rating for sound intensity meters, the measurement of sound transmission in reactive fields is investigated. Derivation of a formula for the reactivity near the surface of a transmitting panel surrounded by a flanking structure in a reverberant field, leads to the development of a theoretical framework and criteria for the planning and evaluation of test arrangements for sound transmission analysis. Guidelines are given for the calculation of minimum receiving room absorption and the microphone spacing required in practical situations. A study of the characteristic properties of sound intensity fields in diffuse and non-diffuse environments is used as a basis in formulating a new method of measuring directional diffusivity. Based on the relationship between reactivity and the degree of directional balance in a sound intensity field, this method involves spatial averaging of the pressure level and determination of the magnitude of the total intensity vector at the point under consideration. A direct-reading diffusivity meter has been developed and employed in assessing diffusivity in practical situations. The effect of a lack of directional diffusivity on the accuracy of sound transmission analysis in reactive fields is examined. Criteria for calculating minimum diffusivity requirements in the source and receiving room are developed and evaluated experimentally.Item A study of wave induced electron precipitation at low and middle latitudes.(1991) Friedel, Reiner Hans-Walter.; Hughes, Arthur R. W.Wave induced electron precipitation (WIEP) can modify the ionosphere above a sub-ionospherically propagating VLF signal in such a way as to perturb the amplitude and phase of the signal: The "Trimpi Event". In this thesis trimpi events are used in a study of WIEP events and in the responsible mechanism: The gyroresonant interaction. Trimpi activity at middle latitudes (SANAE, Antarctica, L = 4.02) and low latitudes (Durban, RSA , L = 1.69) together with the corresponding theory for the gyroresonant interaction is examined and compared. A newly developed computerised system for the detection and analysis of trimpi events has been developed in Durban. This system has been used to analyse tape data recorded at SANAE. Trimpi events were found on various transmitter paths to SANAE and a complete study of 1982 data has led to the establishment of trimpi characteristics as seen at SANAE: an absence of positive events and causative whistlers, a preference for short duration events (t < 25s), the occurrence of some very large events (up to 90% signal attenuation) , two minima in occurrence near 0015 and 0400 h Local Time, low occurrence and occurrence rate of events and evidence that interactions with non-ducted whistlers are of importance. The computerised sytem was then extended to collect data at Durban simultaneously from up to 20 transmitters worldwide. Examination of data from this survey showed very low occurrence rates of trimpis but yielded some daytime events for which the effectiveness of the gyroresonance interaction, which successfully explains the trimpi event at middle and low latitudes, had to be questioned. Thus a fully relativisic test particle simulation of the gyroresonant interaction was used to examine the effectiveness of gyroresonance at low L for producing trimpi events. This simulation was run for a wide range of interaction parameters and yielded the following constraints for effective pitch angle scattering (and hence precipitation) of electrons at low L: wave intensities in excess of 150 nT, wave frequencies in excess of 10 kHz and background electron densities at least one order of magnitude higher than normal. First data from the OMSKI project, a sophisticated VLF receiver operated at Durban as part of an international project, shows further evidence of low-latitude trirmpi activity. A survey of one month's continuous data is presented. In face of the evidence that trimpi events that occur at low L have the same signature as those at middle L but that the standard gyroresonance interaction is insufficient to cause them, alternate scenarios that could enhance the interaction were sought. In particular distortions in the ambient magnetic field (eg. PC-5 pulsations) were modelled using a new dipole-like background field model. This simulation showed that distortions which tend to reduce magnetic field curvature along field lines can significantly enhance the gyroresonant conditions and hence the interaction. A new set of conditions for effective gyroresonance at low L is thus established and contrasted with the more lenient conditions at middle L. A study of "frequency tracking" as a means to prolong resonance showed that natural whistlers do not posess the required frequency /time characteristics for this mechanism, and that artificial waves in a narrow range around the equatorial resonance frequency would ~ well suited for this purpose. An overview of the status of worldwide Trimpi detection networks together with the S.P.R.I. 's role in this regard is presented.Item Linear and nonlinear electron-acoustic waves in plasmas with two electron components.(1991) Mace, Richard Lester.; Hellberg, Manfred Armin.; Bharuthram, Ramesh.Measurements of broadband electrostatic wave emIssons in conjunction with particle distributions in the earth's magnetosphere, have provided motivation for a number of studies of waves in plasmas with two electron components. One such wave-the electron-acoustic wave-arises when the two electron components have widely disparate temperatures (Watanabe & Taniuti 1977), and has a characteristic frequency that lies between the ion and electron plasma frequencies. Because of this broadband nature and because it is predominantly electrostatic, it provides a likely candidate for the explanation of the electrostatic component of "cusp auroral hiss" observed in the dayside polar cusp at between 2 and 4 earth radii as well as the broadband electrostatic noise (BEN) observed in the dayside polar regions and in the geomagnetic tail. The electron-acoustic wave and its properties provide the subjects for much of the investigation undertaken in this thesis. The thesis is divided into two parts. Part I is concerned with certain aspects of the linear theory of the electron-acoustic wave and is based on a kinetic description of the plasma. The dispersion relation for plane electrostatic waves obtained via linearisation of the Vlasov-Poisson system is studied in detail using analytical and numerical/geometrical techniques, and conditions under which the electron-acoustic wave arises are expounded. This work represents an extension of earlier works on Langmuir waves (Dell, Gledhill & Hellberg 1987) and the electron-acoustic wave (Gary & Tokar 1985). The effects of electron drifts and magnetization are investigated. These result, respectively, in a destabilization of the electron-acoustic wave and a modification of the dispersive properties. In this plasma configuration the model more closely replicates the conditions to be found in the terrestrial polar regions. We extend the parameter regimes considered in earlier works (Tokar &Gary 1984) and in addition, identify another electron sound branch related to the electron-cyclotron wave/instability. Effects of ion-beam destabilization of the electron-acoustic wave are also investigated briefly with a view to explaining BEN in the geomagnetic tail and also to provide a comparison with the electron-driven instability. In part II the nonlinear electron-acoustic wave is studied by employing a warm hydrodynamic model of the plasma components. We first consider weak nonlinearity and employ the asymptotic reductive perturbation technique of Washimi &Taniuti (1966) to render the hydrodynamical equations in the form of simpler evolutionary equations describing weakly-nonlinear electron-acoustic waves. These equations admit solitary-wave or soliton solutions which are studied in detail. Wherever possible we have justified our small amplitude results with full numerical integration of the original hydrodynamical equations. In so doing we extended the range of validity of our results to arbitrary wave amplitudes and also find some interesting features not directly predicted by the small amplitude wave equations. In this respect we were able to determine the important role played by the cool- to-hot electron temperature ratio for soliton existence. This important effect is in accordance with linear theory where the electron temperature ratio is found to be critical for electron-acoustic wave existence. The effects of magnetization on electron-acoustic soliton propagation is examined. We found that the magnetized electron-acoustic solitons are governed by a Korteweg-de Vries-Zakharov-Kusnetsov equation. In addition, it is shown that in very strong magnetic fields ion magnetization can become important yielding significant changes in the soliton characteristics. Multi-dimensional electron-acoustic solitons, which have greater stability than their plane counterparts, are also briefly discussed. Employing a weakly-relativistic hydrodynamic model of the plasma, the effect of a cool, relativistic electron beam on such soliton parameters as width, amplitude and speed is studied in detail. Both small- and large amplitude solitons are considered. The arbitrary-amplitude theory of Baboolal et al. (1988) is generalised to include relativistic streaming as well as relativistic thermal effects. The importance of the cool electron (beam)to- hot electron temperature in conjunction with the beam speed is pointed out. Finally, we derive a modified Korteweg-de Vries (mKdV) equation in an attempt to establish whether electron-acoustic double layers are admitted by our fluid model. Although double layers formally appear as stationary solutions to the mKdV equation, the parameter values required are prohibitive. This is borne out by the full fluid theory where no double layer solutions are found.Item Numerical cavity-resonance modelling of impulse excited Pi 2 pulsations in the magnetosphere.(1993) Pekrides, Hercules.; Walker, Anthony David Mortimer.; Sutcliffe, Peter Roy.A magnetohydrodynamic (MHD) cavity-resonance model is developed to study the ultra low frequency (ULF) response in the magnetosphere to an external compressional impulse. It is assumed that the magnitude of the impulse is small enough such that non-linear terms remain negligible. The MHD differential equations are derived in a cold, non-uniform plasma imbedded in a cylindrical ambient field geometry and are solved using numerical finite difference integration methods. The crucial feature of the model is that it allows for the investigation of the response within the magnetospheric cavity to an impulse that has both temporal and spatial form. There is strong observational evidence that low-latitude Pi 2 pulsations have, or are associated with, a global propagation mechanism. Evidence alluding to the global nature of low-latitude Pi 2 is the characteristically low azimuthal (or axial) wavenumbers, (Irnl ;S 1 ). Further evidence of the global nature of Pi 2 is the lack of arrival time difference between globally separate events, as well as the similarity in the spectral content of globally separate events. As an application, the cavity-resonance model is applied to investigate the Pi 2 pulsation event. The cavity-resonance waves are excited by an impulsive perturbation at the magnetopause which is centred about the midnight meridian. The excitation signal is chosen representing the causal Pi 2 mechanism thought to be associated with the sudden, short circuiting of the cross-tail current to the auroral oval. Various aspects of the cavity-resonance wave modes are investigated and the appropriateness of this type of modelling for -the study of Pi 2 is evaluated. Numerical integration and well as Fourier and Laplace methods are used to investigate the transmission of the impulsive signal through the magnetosphere. Coupling between the isotropic (cavity) and the transverse Alfven (resonance) mode is studied. The effect of the plasmapause is considered. Longitudinal variations of polarization as well as the latitudinal phase variations of the perturbed fields are computed. Computational results are compared with observational features of the Pi 2 event.Item The influence of rotating and locked magnetic islands on edge transport in Tokoloshe tokamak.(1993) Van Vuuren, Gary Wayne.; Alport, Michael J.; Hellberg, Manfred Armin.The turbulence and fluctuation induced transport in the edge plasma of the Tokoloshe tokamak was studied using a Langmuir probe array. In this thesis three separate experiments are presented, each of which examines a particular aspect of the edge plasma. In the first experiment measurements of edge plasma parameters are presented. These include standard parameters (such as Ne, Op , Te, etc.) as well as features such as the velocity shear, T(t) during periods of both high and low Mirnov activity, Te/Te and Q. These are compared with results from other machines as well as predictions of several turbulence theories. It was found that many of the results are very similar to those obtained on other machines and that, since the operating parameter space on Tokoloshe is well within the parameter space described by drift wave theories, resistivity-driven gradient driven turbulence theories do not describe the edge turbulence. In the second experiment external windings are used to produce fields which can slow and lock magnetic islands in the toroidally rotating plasma. Edge parameters are again presented and these results compared with those from the so-called 'reference' plasmas, i.e. ones in which no locking occurred. During locking some parameters are dramatically altered, e.g.Te/Te Standard transport theory ignores the effect of Te/Te since they are usually small in reference discharges. During the locked phase, however, certain measurements used to deduce T and Q are greatly affected by increases in Te/Te. As a result, certain assumptions regarding these measurements are no longer valid. Comparison of results for different island positions (produced by different coils) indicates that the assumption of poloidal and toroidal symmetry of edge conditions is invalid. The third experiment investigates the high frequency (~60 kHz), low amplitude, magnetic oscillation which characterises the locked phase and which exhibits some small degree of correlation with the fluctuations observed on (e.g.) Of'. Since over 80% of the spectral power of Te/Te lies below 70 kHz and since Of /Te depends strongly on Te/Te , it is suggested that the magnetic mode and these large variations in Te, may be due to a similar physical process.Item The measurement of electric quadrupole moments of gas molecules by induced birefringence.(1993) Imrie, David Alexander.; Raab, Roger Edouard.; Graham, Clive.Determining the electric quadrupole moments of gas molecules from measurements of birefringence induced in the gas by an applied electric field gradient is widely recognised as being the most direct experimental technique for this purpose. This thesis presents a new molecular theory of the experiment, and also describes the apparatus used in the measurement of the quadrupole moments of a number of gases and the revisions made to the manner in which the experiment was performed. A recent eigenvalue theory of light propagation in matter has been used to derive an expression relating the induced birefringence to the electric quadrupole moment of the molecule, whether this be dipolar or not. This expression is different from that which has previously been applied to dipolar molecules. It is shown that the new expression is independent of molecular origin only if it is cast in terms of the primitive quadrupole moment, as opposed to the traceless moment. Previous work using the same set of apparatus yielded results for carbon dioxide which were significantly lower than those reported by other workers. By using the Jones calculus to re-examine the cascade of optical components used in the experiment, it was found that the previous method of performing the experiment did not completely eliminate the effects of an imperfect retardance in the quarter-wave plate used, nor of strain-induced birefringence in the windows of the the cell containing the gas. These effects could cause results to be underestimated by as much as 8%. It is shown that a better method of performing the experiment is to amplify the optical signal by deliberately offsetting the analysing prism, rather than the quarter-wave plate as was previously done. The results of measurements made using this technique are reported for carbon dioxide, carbon monoxide, nitrogen, ethene, chlorine, and boron trifluoride. The measured quadrupole moment of carbon dioxide is in good agreement with the most recent values found by other workers using a similar experiment, and with the latest theoretical value of this quantity.Item Solar influences on Polar ozone.(1994) Stephenson, Judy Ann Elizabeth.; Scourfield, Malcolm W. J.; Rash, Jonathan Paul Stuart.Measurements by the TOMS instrument aboard the Nimbus 7 satellite, of total column ozone over polar regions have been studied to determine the effects of solar induced natural ozone modulation. Two different analysis methods were employed to ascertain short term (days to months) and long term (months to years) solar influences on polar ozone. Bursts of intense solar activity can result in solar proton events (SPE's). The high energy protons, originating in solar flares, produce secondary electrons which can generate large concentrations of odd nitrogen in the middle atmosphere. These reactive species can catalytically destroy ozone. Three case studies are presented in an attempt to quantify the effect of SPE's on ozone mass over a latitude region 90 to 70°. In order to monitor the ozone response following a SPE over both hemispheres simultaneously, the SPE must occur during the equinox period when both poles are irradiated. Fortuitously, a SPE was recorded in March 1989, the analysis of which forms a case study in this thesis. Ozone depletions of 7.4 x 10 to the power of 9 kg for the south polar cap and 8.0 x 10 to the power of 9 kg for the north polar cap indicate the degree of symmetry for this event. Longer term effects of solar variability are investigated by Fourier techniques. A Fourier transform of eleven years of total ozone mass values, over the region 90 to 70° S, was performed. Inspection of the Fourier spectrum reveals peaks associated with solar cycle, annual and semi-annual oscillations, that may be attributed directly to solar variation. Other peaks, corresponding to QBO and ENSO periodicities, may be ascribed to indirect solar influences i.e. thermally driven dynamics. Finally, a comparison between the phase of the solar cycle peak in this spectrum with that in a spectrum of daily values of solar radio flux, reveals that the austral polar ozone solar cycle periodicity lags solar forcing by 2.8 years. Portions of chapters have been reported at the 1990 South African Institute of Physics Annual Conference, University of Port Elizabeth, South Africa and as a poster at the 1992 Quadrennial Ozone Symposium, Charlottesville, United States of America, 4-13 June 1992. In addition, various parts of this work has been submitted for publication, viz: Stephenson, J. A. E. and M. W. J. Scourfield, Importance of energetic solar protons in ozone depletion, Nature, 352, 137: 1991.Item Planetary waves and the global ozone distribution.(1994) Bodeker, Gregory Elton.; Scourfield, Malcolm W. J.; Randel, William J.; Rash, Jonathan Paul Stuart.Planetary waves are known to play an important role in determining the annual variability in the severity of Antarctic ozone depletion. In this thesis, data obtained from the TOMS experiment on board the Nimbus-7 satellite are used to create global maps of total column ozone for each day from 1979 to 1992. Planetary wave morphology within these distributions is examined using spatial spectral analysis. The wave powers obtained are compared with a measure of the depth and area of the Antarctic ozone hole. A theoretical overview is given of middle atmosphere dynamics and how it influences the global distribution of ozone. Planetary waves play a predominant role in this dynamical distribution as they are responsible for the eddy transport of heat, momentum and long-lived tracers. A discussion of the equations of motion governing planetary wave propagation and their physical interpretation is given. The use of derived meteorological parameters, such as potential vorticity, in the study of planetary waves is developed. The theoretical tools, together with the equations of motion, are used to examine the excitation mechanisms for planetary waves. This theoretical analysis is also used to show that the strength of the westerly jet within the polar vortex determines which planetary wave modes can be expected in the geopotential height fields. In general only wavenumber 1 and 2 propagate during the Southern Hemisphere winter and the strength of these waves strongly modulates the severity of the Antarctic ozone depletion. Furthermore, the timing of the breakdown of the polar vortex is connected with the temporal variation of planetary wave power. A review of the current research in the field of planetary waves and the global distribution of ozone is given. To quantify planetary wave activity, spatial spectral analysis (Fourier Transforms) of midlatitude zonal profiles of total column ozone are used to calculate wave powers in the ozone distribution. Powers at wavenumber 1 to 6 are calculated for each day from 1979 to 1992 for both the Northern and Southern Hemispheres. The powers are seen to decrease with wavenumber throughout the year and the amplitude of wave modes 3 and higher is suppressed during the winter in accordance with the theoretical discussion. Southern Hemisphere wave powers are compared with a daily depleted mass of ozone over the Antarctic from 1979 to 1992. It is found that during years of high (low) planetary wave activity Antarctic ozone depletion is very weak (severe). Finally, the planetary wave morphology observed in the Southern Hemisphere total column ozone distribution is compared with geopotential height waves reported in the literature. Comparison of Northern Hemisphere wave powers and Arctic ozone depletion shows little or no correlation. To examine whether planetary waves may effect the interannual variability in Antarctic vortex temperatures, winter averaged 100 hPa upper air temperatures from SANAE (70°18' S, 2°21' W) are compared with derived planetary wave powers. It is found that during years of high (low) planetary wave activity the SANAE 100 hPa temperatures are above (below) the mean. Analysis of daily total column ozone and upper air temperatures at SANAE, during the winters of 1987 and 1988, shows that wave 1 forcing can significantly influence the day-to-day variation in these quantities. A statistical model of total ozone variation over the entire globe, from 1979 to 1992, has been developed. This model incorporates a long-term linear trend, an annual variation, a quasi-biennial oscillation, a solar cycle variation and a semiannual variation. Since monthly average total column ozone data are used in this model, short term planetary wave influences are masked, and the variations in global ozone are determined primarily by the 5 signals discussed above. However, analysis of the model coefficients indicates that planetary wave activity may significantly contribute to zonal asymmetry in global total ozone trends. Differences between model results and measured data are compared with planetary wave activity. The timing of the breakdown of the Antarctic circumpolar vortex causes large interannual differences in monthly average total column ozone for the months of October and November in the Southern Hemisphere. This analysis is made more specific for South Africa by examining the variation in monthly average total column ozone over the five South African cities of Pretoria, Bloemfontein, Durban, Port Elizabeth and Cape Town for the years 1979 to 1992. A model of surface erythemal irradiance as a function of total column ozone, time of the year and other meteorological parameters is developed. Total ozone data for the 5 cities, used within the context of the statistical model and the DV irradiance model, allows the prediction of future DV levels over South Africa to the year 2000. Planetary wave motion owes its existence to the conservation of potential vor-ticity. However, to make use of this conservation principle as a diagnostic for planetary wave propagation, it is necessary to know the conditions under which it is conserved. A formalism developed by Plumb and Ko (1992) has been used to suggest a technique whereby the 'lifetime' of potential vorticity may be determined. Use was made of data from the NCAR CCM2 model to test this hypothesis. The concentrations of long-lived tracers (CH4 and NzO) extracted from the CCM2 also show the effects of planetary wave breaking on the meridional distribution of these species. This study has important implications for airborne polar chemistry campaigns.Item Refractive effects in phase objects and associated phenomena.(1994) Buccellato, Ricardo.; Michaelis, Max M.; Cunningham, P. F.The effect of the refraction of a laser beam propagating through three different phase objects, i.e. a laser produced plasma and two different gas media, is investigated in this thesis. It is shown that these effects have useful applications. As an introduction to the work performed, a basic discussion of the theory of light is given. In the first experimental study, the accuracy of using the Refractive Fringe Diagnostic, as a tool to determine the electron density profiles of laser produced plasmas, is investigated [Buccellato et al. (1992)]. A comparative study is performed between an established method of determining the electron density profiles of laser produced plasmas, i.e. Nomarski interferometry, and the Refractive Fringe Diagnostic, by comparing experimental data obtained from the same laser shot. For the electron density profiles investigated, it is shown that the Refractive Fringe Diagnostic over-estimates the electron density by an order of magnitude. It is suggested that the electron density errors are due to the inherent assumptions of the Refractive Fringe Diagnostic. To verify this, a numerical simulation into the accuracy of the RFD is performed on a mathematically modelled plasma. The discrepancy in the numerical results are consistent with those of the experimental results and these can be attributed to the assumptions made by the Refractive Fringe Diagnostic. Laser light refracted by a gas medium, with a specific density profile, may produce a near diffraction limited focal spot. The remaining two experimental investigations deal with two novel gas lenses: the Pulsed Gas Lens and the Colliding Shock Lens. A radially expanding cylinder of gas produces a suitable density structure to focus laser light. A design of a gas lens, the Pulsed Gas Lens, using this principle is proposed as a final focusing lens for a laser fusion power station [Buccellato et al. (1993a)]. To establish the feasibility of such a lens a proof-of- principle design for the lens is given. A numerical simulation of this lens is performed by modelling the gas flow from the lens and raytracing through the determined density profiles inside the lens. It is found that this lens can be used as a focusing element. To establish certain practical aspects of the proof-of- principle design, a beam deflection device was constructed and tested. This beam deflection device models the lensing principle of the proposed lens. The laser beam deflection observed did not match the computed deflection. The opening mechanism for the proof-of-principle design did not produce an instantaneous opening of the chamber as was assumed in the simulation. The opening mechanism must be modified to decrease the opening time. Diverging spherical shock waves, produced by pairs of opposing electrodes evenly spaced on a circumference, produce a converging cylindrically symmetric shock wave. After convergence a suitable density structure exists for near diffraction li.mited focusing to occur. It is found that the Colliding Shock Lens is a varifocal lens: the focal length and lens diameter increase with time [Buccellato et al. (1993b)]. A numerical simulation is performed to model the operation of the Colliding Shock Lens. The numerical results compare favourably with the experimental results. From the simulation it is established that the lens diameter can be scaled up by increasing the physical size of the lens and the input energy to the lens. Potential applications of the colliding shock lens are discussed. To conclude this thesis, the results of the separate investigations are summarised.Item Electrostatic wave phenomena in dusty plasma.(1995) Lakshmi, Vidhya S.; Bharuthram, Ramesh.This thesis is concerned with the some aspects of electrostatic wave phenomena dusty plasmas. In particular Debye shielding, nonlinear potential structures such as diploar vortices and solitons are investigated. The phenomenon of Debye shielding is investigated in a dusty plasma where electrons and ions have Boltzmann density distributions and the massive, negatively charged dust grains are taken to be stationary. Small and large amplitude electrostatic potentials are considered. The existence of nonlinear dipolar-vortex and modified convective cell structures are examined in an inhomogeneous magnetized dusty plasma. A study is carried out on arbitrary amplitude rarefactive and compressive solitons in dusty plasmas. Using the reductive perturbation technique, the kinetic Korteweg-de Vries equation and the corresponding equation for fluid theory is derived. The investigation is done on weak (or small amplitude) solitons. Comparisons between the associated soliton profiles are presented.Item Laser applications and refractive properties of non-homogeneous gas distributions.(1995) Lisi, Nicola.; Michaelis, Max M.No abstract available.Item Second light-scattering and Kerr-effect virial coefficients of molecules with linear and lower symmetry.(1995) Couling, Vincent William.; Graham, Clive.Item On the interaction of laser beams with air : with specific reference to refraction and scattering.(1996) Kuppen, M.; Michaelis, Max M.The interaction of laser light with a parcel of air with a known density structure can result in one of three reactions. The simplest of these reactions is reflection. Depending on the nature of the density profile, that part of the light that is not reflected can be refracted or scattered. The extent of the refraction and scattering is determined by the density of the particles found in the air. This thesis investigates two concepts that use the above mentioned interactions. The first, the colliding shock lens (CSL) was proposed by Buccellato, Lisi and Michaelis (1993). This device uses the graded index (GRIN) lens formed by the collision of symmetrically arranged shock waves to focus a laser beam. Unfortunately, the first reported colliding shock lenses had optical apertures of the order of millimeters. This is hardly useful in realistic laser systems whose beams typically have a diameter of 10mm. The major part of this thesis involves the scaling up of the optical aperture of the CSL while simultaneously maintaining a fairly short focal length. We show how the behaviour of the CSL varies with factors such as input energy, electrical diameter, geometry and various other factors. By optimising the physical parameters a 1.5cm diameter lens is obtained having a focal length of 1.5m. We develop a simple scaling theory and run a simulation based on the fluid in cell (FLIC) method, and find good correlation in both cases between the experimentally obtained results and the theoretically predicted ones. As a further development of the work on colliding shock lenses we introduce a cylindrical colliding shock lens. This device is shown to be able to line focus a laser beam of 1cm in diameter. At this stage the focus quality is still poor and suggestions are made for further improvements. Lidar is an acronym for light detection and ranging. Such systems are based on the scattering of laser light incident on a parcel of air. We discuss the results of a campaign conducted during the period of June to November 1994 to study aerosol concentrations over Durban. Particular attention is paid to low level aerosols due to sugar cane burning over the Natal coast. These aerosols are known to influence local climate and since vertical profile studies have never been carried out, this investigation gives some useful insight into the atmospheric dynamics. We find that in June (the begining of the burning campaign) the aerosol loading in the lower atmosphere is low. However, there are very stable aerosol layers at 3km and 5km. The density of the aerosols in these layers are decoupled. In September, the turbulent atmosphere over Durban is found to destroy structure in the aerosol layers. Nevertheless, the aerosol loading is high. Scattering ratios and extinction coefficients are calculated to show the long and short term evolution of the aerosols. A new coefficient (the low altitude aerosol coefficent - LAAC) is defined as an indicator for aerosol loading in the lower atmosphere. This coefficient is compared with total column ozone values over Durban. An anti-correlatory behaviour is noticed. We also report the detection of an extremely high aerosol layer (60km) over Durban. This layer is believed to be sodium. The profiles are compared to satellite data to verify the first ever detection of a constituent at these altitudes in Southern Africa.