Medical Biochemistry
Permanent URI for this communityhttps://hdl.handle.net/10413/7035
Browse
Browsing Medical Biochemistry by Subject "Allium vineale."
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item The effects of Tulbaghia violacea leaf, bulb and stalk extracts on Jurkat cells.(2012) Mackenzie, Jared Stuart.; Myburg, Rene Bernadette.; Serumula, Metse Regina.Studies have shown that the traditional healers have used Tulbaghia violacea (TV) (also known as ‘wild garlic’) for the treatment of a number of ailments including fever, tuberculosis, stomach problems, and oesophageal cancer. However, little is known with regards to the anticancer and antiproliferative properties of this plant. Therefore, this study investigated the effects of TV and domesticated garlic extracts on Jurkat cells, in order to determine whether or not these extracts possess anti-proliferative properties. Cultured Jurkat cells were treated with IC50 concentrations of garlic (14μg/ml), TV leaf (256μg/ml), TV bulb (225μg/ml) and TV stalk (216μg/ml) extracts as determined by the methylthiazol tetrazolium assay. Free radical production was measured using the thiobarbituric acid reactive substance (TBARS) and nitric oxide (NO) assays, while glutathione (GSH) concentration was measured using the GSH-Glo™ assay. The apoptosis inducing properties of each extract were measured using flow cytometry (Annexin V- Fluos and JC-1 assays) and luminometry (caspases 3/7, 8, 9 and ATP). Western blots were run to determine protein expression, while comet and DNA fragmentation assays were used to determine the level of DNA damage induced. Wild and domesticated garlic extracts induced a significant increase in malondialdehyde concentration ([MDA]), with TV bulb extract inducing the highest concentration (p<0.0001). A significant increase in NO concentration was observed in the bulb (p<0.0001) and stalk (p<0.001) extracts, and leaf (p<0.05) and stalk (p<0.05) TV extracts significantly increasing GSH concentration. The longest comet tails were observed in TV bulb extracts (p<0.0001) and comprised mainly of single strand breaks, while the comets induced following garlic exposure contained double strand breaks. All extracts, except TV leaf, increased the percentage of cells undergoing apoptosis. Tulbaghia violacea leaf induced a significant (p<0.0001) increase in percentage of cells undergoing necrosis, whereas TV bulb resulted in a significant (p<0.0001) decrease. All TV extracts induced caspase 3/7 and 9 activity, with the most significant increase in caspase 9 activity observed for TV leaf and bulb. No significant change in caspase 3/7 activity was evident for domesticated garlic. Cleavage of PARP and expression of NF B and HSP 70 occured for all extracts. However, HSP 70 was not differentially expressed. Exposure to wild and domesticated garlic extracts induced peroxidative lipid and DNA damage within the cells, indicating oxidative stress. This damage occurred in conjunction with increased percentage of cells undergoing apoptosis and expression of caspase 3/7. Therefore, these findings suggest that TV is inducing cell death through apoptosis in Jurkat cells using a number of mechanisms, including the induction of oxidative stress. This is of clinical significance, as cell death through apoptosis is the preferred method of action for anti-cancer drugs.