Masters Degrees (Physics)
Permanent URI for this collectionhttps://hdl.handle.net/10413/6604
Browse
Browsing Masters Degrees (Physics) by Subject "Astrophysics."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Dissipative gravitating systems.(2011) Fleming, Darryl.; Govender, Megandren.; Maharaj, Sunil Dutt.In this thesis we investigate the effect of shear on radiating stars undergoing gravitational collapse. The interior spacetime is described by the most general spherically symmetric line element in the absence of rotation. The energy momentum tensor for the stellar interior is taken to be an anisotropic fluid with heat flux. The thermodynamics of a relativistic fluid is reviewed for the Eckart and causal theories. Since the star is radiating energy to the exterior in the form of a radial heat flux, the atmosphere is described by Vaidya's outgoing solution. We provide the matching conditions required for the continuity of the momentum flux across the boundary, which determines the temporal evolution junction conditions for the metric functions. We provide a general method to obtain shearing solutions of the Einstein field equations describing a radiating, collapsing sphere. A particular exact solution satisfying the boundary condition and field equations is found. The validity of this specific model is investigated by employing a causal heat transport equation which yields the temperature profile within the stellar core. The energy conditions are studied and yield interesting features of this particular model which are absent in the shear-free case.Item Radiating solutions with heat flow in general relativity.(1994) Govender, Megandren.; Hughes, Arthur R. W.; Maharaj, Sunil Dutt.In this thesis we model spherically symmetric radiating stars dissipating energy in the form of a radial heat flux. We assume that the spacetime for the interior matter distribution is shear-free. The junction conditions necessary for the matching of the exterior Vaidya solution to an interior radiating line element are obtained. In particular we show that the pressure at the boundary of the star is nonvanishing when the star is radiating (Santos 1985). The junction conditions, with a nonvanishing cosmological constant, were obtained. This generalises the results of Santos (1985) and we believe that this is an original result. The Kramer (1992) model is reviewed in detail and extended. The evolution of this model depends on a function of time which has to satisfy a nonlinear second order differential equation. We solve this differential equation in general and thereby completely describe the temporal behaviour of the Kramer model. Graphical representations of the thermodynamical and gravitational variables are generated with the aid of the software package MATHEMATICA Version 2.0 (Wolfram 1991). We also analyse two other techniques to generate exact solutions to the Einstein field equations for modelling radiating stars. In the first case the particle trajectories are assumed to be geodesics. We indicate how the model of Kolassis et al (1988) may be extended by providing an ansatz to solve a second order differential equation. In the second case we review the models of de Oliveira et al (1985, 1986, 1988) where the gravitational potentials are separable functions of the spatial and temporal coordinates.