• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Life Sciences
    • Biological Sciences
    • Botany
    • Masters Degrees (Botany)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Life Sciences
    • Biological Sciences
    • Botany
    • Masters Degrees (Botany)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Biochemical and ultrastructural changes associated with chilling injury in soybean seeds during imbibition.

    Thumbnail
    View/Open
    Thesis. (3.038Mb)
    Date
    1996
    Author
    Roskruge, Carol Lynette.
    Metadata
    Show full item record
    Abstract
    Biochemical and ultrastructural changes associated with chilling injury (CI) in soybean seeds imbibed at 5°C and 25°C were investigated. Soybean seed germination appeared to be affected by chilling temperatures and initial seed moisture content. Seeds with higher moisture contents exhibited 85% germination, while low moisture content seeds had a 32% germination. Leakage rates were greater in chilled seeds, indicating that membrane integrity in the tissues was impaired at chilling. The low rates of potassium ion leakage between 6 and 24 hours of imbibition compared to the high peroxide levels observed during this period led to the suggestion that lipid peroxidation was a better marker of CI than leakage. Transient changes in lipid hydroperoxide levels were observed in chilled and non-chilled seeds and axes. However, in axes, the increase in lipid hydroperoxides after 12 hours of imbibition at chilling temperatures was associated with an 18% decline in linoleic acid levels of total lipid fraction. Similarly, a 10% decline was observed in the polar lipid fraction. These results suggest that the capacity of seeds to control lipid peroxidation may be an important component in CI and that a consequence of peroxidation is likely to be a loss of fatty acid unsaturation. Sugar levels were not affected by chilling and non-chilling temperatures and no relationship could be established with CI. Antioxidant defense enzymes (catalase and superoxide dismutase) were expressed at chilling and non-chilling temperatures and increases were observed after 24 hours of imbibition which showed an apparent correlation with increases to lipid hydroperoxide levels. Enzyme levels decreased after 48 hours of imbibition at a time which coincided with the decline observed in the peroxide levels. Overall, no marked differences were observed in chilled and non-chilled cells at the ultrastructural level, except that vacuolar reserve mobilization was markedly impeded.
    URI
    http://hdl.handle.net/10413/10321
    Collections
    • Masters Degrees (Botany) [130]

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV