• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Chemistry and Physics
    • Chemistry
    • Masters Degrees (Chemistry)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Chemistry and Physics
    • Chemistry
    • Masters Degrees (Chemistry)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Synthesis, characterization and application of supported nickel catalysts for the hydrogenation of octanal.

    Thumbnail
    View/Open
    Thesis. (2.261Mb)
    Date
    2010
    Author
    Mthalane, Samkelo.
    Metadata
    Show full item record
    Abstract
    Three nickel based catalysts were prepared by the impregnation method (Ni/Al2O3 and Ni/SiO2) and co-precipitation method (Ni/ZnO). The catalysts were characterized by XRD, ICP-OES, BET-surface area and pore volume, SEM, TEM, TPR, NH3-TPD and in-situ XRD reduction. The catalytic activity of the catalysts in the liquid phase hydrogenation of octanal was studied at 110 °C and 50 bar. The effect of water as a co-feed on the catalytic activity of the catalysts was also investigated. Generally, all the catalysts were crystalline materials. The Ni/Al2O3 and Ni/ZnO catalysts contained NiO species that were “hard” to reduce, whereas the Ni/SiO2 catalyst was the easiest to reduce, according to the TPR and in-situ XRD reduction studies. The total acidity (μmol NH3/gcatal.) of the catalysts decreased in the following sequence: Ni/Al2O3 > Ni/ZnO > Ni/SiO2. The Ni/SiO2 and Ni/ZnO catalysts had intermediate and strong acidic sites, respectively, while the Ni/Al2O3 catalyst had weak-intermediate and strong acidic sites. The BET-surface area and pore volume of the catalysts decreased in the following order: Ni/Al2O3 > Ni/SiO2 > Ni/ZnO. The conversion of octanal for all the catalysts was ca. 90 %. The Ni/SiO2 and Ni/ZnO catalysts had octanol selectivities of over 99 % and the Ni/Al2O3 catalyst had 95 % octanol selectivity. The alumina support was observed to catalyze the formation of heavy products (C24 acetal, dioctyl ether and 2-hexyl-1-decanol). The water present in the feed poisoned the alumina sites that were responsible for the formation of heavy products thereby, making the catalyst more selective (> 99 %) to octanol. For the Ni/SiO2 catalyst the presence of water in the feed caused the octanal conversion to decrease with time-on-stream. The deactivation of the Ni/SiO2 catalyst, when water was used as a co-feed, was caused by the mechanical failure of the catalyst and also by the leaching of nickel metal during the reaction.
    URI
    http://hdl.handle.net/10413/10633
    Collections
    • Masters Degrees (Chemistry)

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV