• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Agricultural, Earth and Environmental Sciences
    • Agricultural Economics
    • Masters Degrees (Agricultural Economics)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Agricultural, Earth and Environmental Sciences
    • Agricultural Economics
    • Masters Degrees (Agricultural Economics)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An economic evaluation of water treatment costs in the Umgeni catchment area.

    Thumbnail
    View/Open
    Thesis. (1.086Mb)
    Date
    1996
    Author
    Dennison, Diane Bridget.
    Metadata
    Show full item record
    Abstract
    This study has two objectives: first, to identify the main contaminants responsible for high water treatment costs in the Umgeni catchment area, and second, to predict water treatment costs from observed levels of contaminants. Reliable information about the origin of high water treatment costs is required to inform both policy and planning decisions. Partial adjustment models of water treatment costs are estimated using ordinary least squares regression and principal component analysis. First a model is estimated for the DV Harris treatment plant, which draws water from Midmar Dam. This model highlights important policy issues and explains 61 per cent of the variation in chemical treatment costs. Environmental contaminants have a marked impact on real water treatment costs at the DV Harris plant. Water treatment costs increase when levels of alkalinity, sodium and turbidity fall. Conversely, real costs rise with higher levels of dissolved oxygen and water stability. Paradoxically, clean water - typical of Midmar Dam is expensive to treat. Water treatment costs also rise when concentrations of the algae, Chiorella, decline. Second, a model is estimated for the Durban Heights treatment plant, which draws water from Nagle and Inanda Dams. This model explains 68 per cent of the variation in chemical treatment costs. Biological contaminants have a marked impact on real water treatment costs at the Durban Heights plant. Again, water treatment costs increase when levels of, Chiorella fall. Apparently the level of Chiorella varies inversely with the level of other, more expensive, contaminants at both treatment plants. Conversely, real costs rise with higher levels of total kjeldahl nitrogen, temperature, Anabaena and Microcystis. Water treatment costs also rise when turbidity and concentrations of silica, suspended solids and iron increase. The model predicts actual water treatment costs well (except during occasional peak cost periods) and provides a useful tool for scenario testing. For example, a simulation exercise in which turbidity levels were held constant at 6 NTU (nephelometric turbidity units) indicated an annual saving of R54 531 in water treatment costs.
    URI
    http://hdl.handle.net/10413/11769
    Collections
    • Masters Degrees (Agricultural Economics) [88]

    Related items

    Showing items related by title, author, creator and subject.

    • The use of environmental isotopes, soil water measurements and soil water modelling to understand tree water use of an Acacia mearnsii (Black wattle) stand in KwaZulu-Natal. 

      Watson, Andrew. (2015)
      In Southern Africa commercial afforestation is an important agricultural activity and accounts for a large portion of the gross agricultural production, However, there are concerns regarding its possible detrimental ...
    • A comparative life cycle assessment (LCA) of water treatment plants using alternative sources of water (seawater and mine affected water). 

      Goga, Taahira. (2016)
      Water is a replenishing, yet at times scarce resource that is necessary for the growth and development of all organisms and plant life. In South Africa, the situation is challenging due to competing demands for limited ...
    • Evaluation of the water use licensing regime of the National Water Act in advancing the protection and conservation of water resources. 

      Mdlalose, Nompumelelo Portia Sibusisiwe. (2019)
      No abstract provided.

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV