• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Engineering
    • Electronic Engineering
    • Doctoral Degrees (Electronic Engineering)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Engineering
    • Electronic Engineering
    • Doctoral Degrees (Electronic Engineering)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Channel characterization for broadband powerline communications.

    Thumbnail
    View/Open
    Thesis (3.680Mb)
    Date
    2014
    Author
    Mulangu, Chrispin Tshikomba.
    Metadata
    Show full item record
    Abstract
    The main limiting factor in broadband powerline communications is the presence of impedance discontinuities in the wired channel. This phenomenon is present in both outdoor and indoor powerline communication (PLCs) channels. It has been established that the impedance of the electrical loads and line branching are the main causes of impedance discontinuities in PLC channel networks. Accurate knowledge of the expected impedances of the corresponding discontinuity points would be vital in order to characterize the channel for signal transmission. However, the PLC channel network topologies lead to different branching structures. Additionally, the existence of a myriad of electrical loads, whose noise and impedance vary with frequency, are a motivation for a rigorous design methodology in order to achieve a pragmatic channel model. In order to develop such a channel model, an approach similar to the one applied in radio propagation channel modeling is adopted, where specific attenuation determined at a point is used in predicting the attenuation for the entire power cable length. Therefore, the powerline is modeled with the assumption of a randomly spread multitude of scatterers in the vicinity of the channel with only a sufficient number of impedance discontinuity points. The line is considered as a single homogeneous element with its length divided into a grid of small areas with dimensions that range from 0.5 to 3 mm. Thus, each small area transmits an echo and the forward scattered response gets to the receiver. With this approach, point specific attenuation along the line is proposed and used to derive the channel transfer function. Measurement results show that both the analytical specific attenuation model developed in this work and the channel transfer function are feasible novel ideas in PLC channel network characterization. It is seen from the measurements that the signal attenuation is directly proportional to the number of branches, and this is in line with the findings of previous researchers. A comparison between the measured values and the simulation results of the frequency response shows a very good agreement. The agreement demonstrates applicability of the models in a practical enviroment. Thus we conclude that the models developed do not require knowledge either of the link topology or the cable models but requires an extensive measurement campaign.
    URI
    http://hdl.handle.net/10413/12116
    Collections
    • Doctoral Degrees (Electronic Engineering) [62]

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV