• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Agricultural, Earth and Environmental Sciences
    • Agricultural Economics
    • Masters Degrees (Agricultural Economics)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Agricultural, Earth and Environmental Sciences
    • Agricultural Economics
    • Masters Degrees (Agricultural Economics)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analysis and prediction of chemical treatment cost of potable water in the Upper and Middle Vaal water management areas.

    Thumbnail
    View/Open
    Gebremedhin_SK_2009.pdf (1.014Mb)
    Date
    2009
    Author
    Gebremedhin, Samuel Kahsai.
    Metadata
    Show full item record
    Abstract
    This study is a component of a research project on the economic costs of eutrophication in the Vaal River system. Its objective is to investigate the relationship between raw water quality and the chemical costs of producing potable water at two water treatment plants: Zuikerbosch Station #2 (owned by Rand Water) in the Upper Vaal Water Management Area (UVWMA), and Balkfontein (owned by Sedibeng Water) in the Middle Vaal Water Management Area (MVWMA). Time series data on raw water quality and chemical dosages used to treat raw water were obtained for Zuikerbosch Station #2 (hereafter referred to as Zuikerbosch) for the period November 2004 – October 2006 and for Balkfontein for the period January 2004 to December 2006. Descriptive statistics reveal that raw water in the Vaal River is of a poorer quality at Balkfontein compared to that at Zuikerbosch. Furthermore, the actual real chemical water treatment costs (measured in 2006 ZAR) averaged R89.90 per megalitre at Zuikerbosch and R126.31 at Balkfontein, indicating that the chemical water treatment costs of producing potable water tend to increase as raw water quality declines. Collinearity among water quality (WQ) variables at both water treatment plants was analysed using Principal Component Analysis (PCA). The dimensions of water quality identified in the analysis are similar to those reported in Pieterse and van Vuuren’s (1997) study of the Vaal River. For both water treatment plants, Ordinary Least Squares (OLS) regression was used to identify the relationship between real chemical costs of water treatment and the dimensions of water quality identified through the respective Principal Components Analyses. The estimated regression models account for over 50.2% and 34.7% of variation in real chemical water treatment costs at Zuikerbosch and Balkfontein, respectively. The coefficient estimated for PC1 at Zuikerbosch is statistically significant at the 1% level of probability with high negative loadings of total alkalinity and turbidity. Increases in the levels of total alkalinity and turbidity in raw water treated at Zuikerbosch is negatively related to the chemical costs of water treatment. An increased total alkalinity level was found to reduce the chemical costs of treating potable water. PC2 is statistically the most important variable in the estimated explanatory model for Balkfontein. The estimated regression coefficient for PC2 is statistically significant at the 5% level of probability. The estimated relationship between chemical water treatment costs and PC2 shows that there is a positive relationship between the raw water temperature and chemical water treatment costs. However, increases in the levels of chlorophyll and pH in raw water treated at Balkfontein is negatively related to the chemical costs of water treatment. Total hardness, magnesium, calcium, sulphate, conductivity, and chloride, being the highest positive loadings in PC1, relate negatively to the chemical cost of treating water. For predictive rather than explanatory purposes, a partial adjustment regression model was estimated for each of the two water treatment plants. Using this model, real chemical water treatment costs were specified as a function of real chemical water treatment costs in the previous time period, and of raw water quality variables in the current period. The R2 statistics for the two regression models were 61.4% using the data for Zuikerbosch and 59.9% using the data for Balkfontein, suggesting that both models have reasonable levels of predictive power. The chemical cost of water treatment for Zuikerbosch and Balkfontein are predicted at R96.25 and R90.74 per megalitre per day respectively. If raw water nitrate in the UVWMA increases by 1% per megalitre a day while other factors remain constant, chemical water treatment costs at Zuikerbosch can be expected to increase by 0.297% per megalitre and the cost accompanied this change is (R0.285*1998ML*365days) R207,841.95 provided that Zuikerbosch treats an average of 1998 megalitres per day. Likewise, if Zuikerbosch maintains its daily average operating capacity and is able to maintain an optimal level of total alkalinity in UVWMA, the estimated saving on chemical water treatment cost will be R150.063.78 per annum. At Balkfontein, chemical water treatment cost is expected to increase on average by 0.346% per megalitre per day for a 1% per megalitre per day increase in the level of chlorophyll-a, and the cost accompanied this change is R41,128.20 per annum. The prediction also shows a 2.077% per megalitre per day increase chemical water treatment cost for a 1% increase in turbidity and this accompanied with a chemical water treatment cost of R 249,003 per annum, provided that Balkfontein operates at its full capacity (i.e., 360 megalitres per day).
    URI
    http://hdl.handle.net/10413/1223
    Collections
    • Masters Degrees (Agricultural Economics) [86]

    Related items

    Showing items related by title, author, creator and subject.

    • The influence of the distance to running water or standing water bodies on rural household income. 

      Naidoo, Youkita.
      Rural areas in South Africa are characterised by a lack of formal authority and inadequate basic services such as water and sanitation. As a result, deficiencies here include, but are not limited to, poor access to health ...
    • Water quality management staff turnover at the Department of Water Affairs. 

      Rakgotho, Thabisile. (2012)
      The Department of Water Affairs has experienced major staff voluntary turnover in their Water Quality Management section. The water quality management is regarded as a scarce-occupational class (Resolution No. 8 of 2009); ...
    • The hydrological basis for the protection of water resources to meet environmental and societal requirements. 

      Taylor, Valerie. (2006)
      In common with other natural systems, aquatic ecosystems provide a wealth of economically valuable services and long-term benefits to society. However, growing human populations, coupled with increased aspirations for ...

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV