• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Chemistry and Physics
    • Physics
    • Doctoral Degrees (Physics)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Chemistry and Physics
    • Physics
    • Doctoral Degrees (Physics)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The evolution of orbital-angular-momentum entanglement of photons in turbulent air.

    Thumbnail
    View/Open
    Thesis. (4.746Mb)
    Date
    2013
    Author
    Ibrahim, Alpha Hamadou.
    Metadata
    Show full item record
    Abstract
    Quantum entanglement plays an important role in the emerging quantum information processing and communications tasks. To this day, almost all these tasks use quantum systems described by a two dimensional Hilbert space (qubits). The use of multidi- mensionally entangled quantum systems, provides many advantages. For instance, it has been shown that multidimensional entangled systems provide a higher information capacity and an increased security in quantum cryptography. One way to implement higher dimensional quantum systems is to use the orbital angular momentum (OAM) states of light. The OAM state of light can be used to encode quantum information onto a laser beam which can then be transmitted to a receiver through a turbulent at- mosphere. The main question here is how does atmospheric turbulence in uence the encoded quantum information? In the work that follows, we investigate theoretically and experimentally the evolu- tion of the OAM entanglement in atmospheric turbulence. We show how atmospheric turbulence induces cross-talk between the different OAM modes. We rst study numerically and experimentally the decay of OAM entanglement be- tween two qubits propagating in atmospheric turbulence. The turbulence is modelled by a single phase screen based on the Kolmogorov theory of turbulence. It is found that higher order modes are more robust in turbulence. We derive an empirical formula for the distance scale at which entanglement decays in terms of the scale parameters and the OAM value. Then we study numerically the evolution of OAM entanglement in a turbulent atmo- sphere modelled by a series of consecutive phase screens. It is found that the evolution of the OAM entanglement can not always be described by a single dimensionless quan- tity. Under certain conditions, two dimensionless parameters are required to describe the evolution of OAM entanglement in turbulence. The evolution of OAM entnaglement between two qutrits propagating in turbulence is also considered, it is found that the OAM entanglement between qutrits decays at an equal or faster rate compared to OAM entanglement between qubits. i
    URI
    http://hdl.handle.net/10413/12400
    Collections
    • Doctoral Degrees (Physics) [93]

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV