• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School Mathematics, Statistics and Computer Science
    • Applied Mathematics
    • Doctoral Degrees (Applied Mathematics)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School Mathematics, Statistics and Computer Science
    • Applied Mathematics
    • Doctoral Degrees (Applied Mathematics)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Thermal evolution of radiation spheres undergoing dissipative gravitational collapse.

    Thumbnail
    View/Open
    Thesis (1.038Mb)
    Date
    2014
    Author
    Reddy, Kevin Poobalan.
    Metadata
    Show full item record
    Abstract
    In this study we investigate the physics of a relativistic radiating star undergoing dissipative collapse in the form of a radial heat flux. Our treatment clearly demonstrates how the presence of shear affects the collapse process; we are in a position to contrast the physical features of the collapsing sphere in the presence of shear with the shear-free case. We first consider a particular exact solution found by Thirukkanesh et al [1] which is expanding, accelerating and shearing. By employing a causal heat transport equation of the Maxwell-Cattaneo form we show that the shear leads to an enhancement of the core stellar temperature thus emphasizing that relaxational effects cannot be ignored when the star leaves hydrostatic equilibrium. We also employ a perturbative scheme to study the evolution of a spherically symmetric stellar body undergoing gravitational collapse. The Bowers and Liang [2] static model is perturbed, and its subsequent dynamical collapse is studied in the linear perturbative regime. We find that anisotropic effects brought about by the differences in the radial and tangential pressures enhance the perturbations to the temperature, and that causal and non–causal cases yield identical profiles.
    URI
    http://hdl.handle.net/10413/12408
    Collections
    • Doctoral Degrees (Applied Mathematics) [61]

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV