• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School Mathematics, Statistics and Computer Science
    • Computer Science
    • Masters Degrees (Computer Science)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School Mathematics, Statistics and Computer Science
    • Computer Science
    • Masters Degrees (Computer Science)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Unsupervised caries detection in non-standardized bitewing dental X-Rays.

    Thumbnail
    View/Open
    Osterloh_John_2017.pdf (4.995Mb)
    Date
    2017
    Author
    Osterloh, Darren John.
    Metadata
    Show full item record
    Abstract
    In recent years dental image processing has become a useful tool in aiding healthcare professionals diagnose patients by reducing some of the problems inherent with dental radiographs. Despite advances in the eld, accurate diagnoses of dental caries using Comptuer-aided Diagnosis (CAD) tools are still problematic due to the non-uniform nature of dental X-rays. The reason as to why accurate diagnoses are problematic is in part due to exisiting systems utilizing a supervised learning model for their diagnostic algorithms. Using this approach results in a detection system which is trained to identify caries under speci c conditions. When the input images vary greatly from the training set, these systems have a tendency to misdiagnose patients or miss possible caries altogether. A method for the segmentation of teeth in periapical X-Rays is presented in this dissertation as well as a method for the detection of caries across a variety of non-uniform X-ray images using an unsupervised learning model. The diagnostic method proposed in this dissertation uses an assessment protocol similar to how dentists evaluate the presence of caries. Using this assessment protocol results in caries being evaluated relative to the image itself and not evaluated relative to a set of identi ers obtained from a learning model. The viability of an unsupervised learning model, and its relative e ectiveness of accurately diagnosing dental caries when compared to current systems, is indicated by the results detailed in this dissertation. The proposed model achieved a 96% correct diagnostic which proved competitive with existing models.
    URI
    http://hdl.handle.net/10413/15308
    Collections
    • Masters Degrees (Computer Science)

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV