• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School Mathematics, Statistics and Computer Science
    • Computer Science
    • Masters Degrees (Computer Science)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School Mathematics, Statistics and Computer Science
    • Computer Science
    • Masters Degrees (Computer Science)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Q-Cog: a Q-Learning based cognitive agent architecture for complex 3D virtual worlds.

    Thumbnail
    View/Open
    Thesis. (8.072Mb)
    Date
    2017
    Author
    Waltham, Michael.
    Metadata
    Show full item record
    Abstract
    Intelligent cognitive agents should be able to autonomously gather new knowledge and learn from their own experiences in order to adapt to a changing environment. 3D virtual worlds provide complex environments in which autonomous software agents may learn and interact. In many applications within this domain, such as video games and virtual reality, the environment is partially observable and agents must make decisions and react in real-time. Due to the dynamic nature of virtual worlds, adaptability is of great importance for virtual agents. The Reinforcement Learning paradigm provides a mechanism for unsupervised learning that allows agents to learn from their own experiences in the environment. In particular, the Q-Learning algorithm allows agents to develop an optimal action-selection policy based on their experiences. This research explores the adaptability of cognitive architectures using Reinforcement Learning to construct and maintain a library of action-selection policies. The proposed cognitive architecture, Q-Cog, utilizes a policy selection mechanism to develop adaptable 3D virtual agents. Results from experimentation indicates that Q-Cog provides an effective basis for developing adaptive self-learning agents for 3D virtual worlds.
    URI
    http://hdl.handle.net/10413/15654
    Collections
    • Masters Degrees (Computer Science) [72]

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV