Repository logo
 

Recurrent selection for drought tolerance in Maize (Zea mays L. and study of heterotic patterns of maize populations from Eastern Kenya.

Loading...
Thumbnail Image

Date

2007

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

There are few maize varieties that are drought tolerant in semi-arid eastern Kenya and farmer perceptions of drought tolerant maize cultivars have not been studied in this region. Farmers in this region use maize landraces that have not been studied for their potential future hybridization. The main objectives of this study were therefore to: (i) study farmer perceptions of drought and preference for maize varieties, (ii) improve drought tolerance in maize populations in the semi-arid eastern Kenya using S1 family recurrent selection, and (iii) classify maize landraces according to their heterotic patterns. A participatory rural appraisal (PRA) was conducted in Machakos and Makueni districts in semi-arid eastern Kenya. A total of 175 farmers were involved in focus group discussions. An open ended questionnaire and a checklist were used to guide the farmers during the discussion sessions. Scoring and ranking techniques were used to assess farmers’ preferences of maize varieties and constraints to maize production. The farmers grew maize as their major crop followed by beans. Nearly 60% of the farmers grew local maize landraces, whose seed they recycled from season to season; 40% grew improved varieties, but mainly composites rather than hybrids. The key farmers’ criteria for choosing a maize variety in order of importance were drought tolerance, early maturity, high yield, and disease resistance. The major constraints to maize production were drought, lack of technical know-how, pests, poor soils, and inadequate seed supply. Maize traits preferred by farmers in a drought tolerant variety included high yield, recovery after a dry spell and the stay green characteristic. Two maize landrace populations MKS and KTU from semi-arid eastern Kenya and three CIMMYT populations V032, ZM423, and ZM523 were subjected to two cycles of S1 progeny recurrent selection for drought tolerance in yield and traits indicative of drought tolerance were measured during flowering and grain filling from February 2005 to September 2007. Evaluation to determine selection gains was done in one trial replicated five times. It was laid out as a 4x4 lattice design and drought was imposed at reproductive stage by withholding irrigation one week before flowering and resumed during grain filling. The trial was repeated under well-watered conditions which served as a control experiment. After two cycles of selection under drought stress conditions, KTU population had a realized gain in yield of 0.2 t ha-1, MKS population 1.2 t ha-1 and ZM423 0.4 t ha-1, whereas in V032 and ZM523, grain yield reduced by 1.1 t ha-1 and 0.6 t ha-1, respectively. Under well watered conditions, the realized gains in grain yield were positive in all the populations except V032, where there was a reduction of 0.1 t ha-1. Selection increased the genetic variability and heritability estimates for yield in S1 lines of MKS and ZM423 populations, but decreased in KTU, V032 and ZM523 populations. The research to identify heterotic patterns was undertaken using ten maize landraces from the semi-arid eastern Kenya, six maize landraces from coastal Kenya, and three maize populations from CIMMYT. These populations were planted at Kiboko Research Farm during the short rains of October-December 2005 and crossed to two population testers, Embu 11 and Embu 12. The evaluation of the test crosses was done during the long rains of March-June 2006. Percentage heterosis for yield ranged from -17.7% to 397.4%, -79.4 to 22.2% for anthesis-silking interval, -23.9% to 29.2% for ear height, -0.1 to 1.1 for ear diameter, -7.1 to 21.2% for ear length and -5.9% to 30.3% for plant height. iii General combining ability (GCA) effects were significant (p=0.05) for all the traits, while specific combining ability (SCA) effects were not significant (p>0.05), implying that variation among these crosses was mainly due to additive rather than nonadditive gene effects. Since SCA was not significant (p>0.05) for yield, maize populations were classified based on percentage heterosis for yield alone. The maize populations therefore, were grouped into three different heterotic groups P, Q and R. Twelve landrace populations and two CIMMYT populations showed heterosis with Embu 11 and no heterosis with Embu 12 were put in one group P. Two landrace populations that showed no heterosis with either tester were put in group Q. Two landrace populations and one CIMMYT population showed heterosis with both testers were put in group R. None of the populations showed heterosis only with Embu 12 and no heterosis with Embu 11. The main constraint to maize production was drought and the farmers preferred their landraces whose seed they recycled season to season. After two cycles of recurrent selection, the landrace populations showed improved progress in yield. Thus, further selection will be beneficial in the populations where genetic variability increased. Therefore, these populations can further be improved per se and released as varieties and/or incorporated into the existing maize germplasm to broaden their genetic base, given that their heterotic patterns have been identified. Considering that farmers recycle seed, breeding should be towards the development of open-pollinated varieties which are drought tolerant.

Description

Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2007.

Keywords

Maize--Drought tolerance--Kenya., Maize--Effect of drought on--Kenya., Maize--Varieties--Kenya., Maize--Kenya--Genetics., Maize--Yields--Kenya., Selection (Plant breeding)--Africa., Theses--Plant breeding., Maize--Breeding--Kenya.

Citation

DOI