Repository logo
 

Comparative aspects of the thermal biology of African and Australian parrots.

Loading...
Thumbnail Image

Date

2006

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Deserticolous birds inhabit an environment characterised by high ambient temperatures and low rainfall that has low primary productivity. The combination of these factors may lead to the evolution of adaptations that minimise food and water requirements. One physiological adaptation that has been found in many deserticolous birds is the reduction of basal metabolic rate (BMR). I measured metabolic rate in the laboratory using four species of African lovebirds (Agapornis) , and four species of Australian grass parakeets (one Neopsephotus and three Neophema), all similar in body mass. Tests for differences between groups were carried out using both conventional and phylogenetically independent methods. The BMRs of the lovebird and grass parakeet species were not statistically correlated with habitat type. These results confirm the findings of previous studies on the effect of desert conditions on the BMR of parrots. I also found no significant differences in BMR between the species assemblages from different continents. The lack of significant differences in BMR between deserticolous and nondeserticolous parrots supports the idea that birds are "ex-adapted" to living in desert environments. I suggest that the results may have been affected by phenotypic plasticity in BMR, as recent evidence has shown that the scaling exponent of BMR differs between captive-raised and wild-caught birds. To elucidate the effect of origin (captive-raised vs. wild-caught) on the BMR of birds used in this study a large scale analysis of bird BMR data was undertaken. BMR and body mass data for 242 species of birds were obtained from the literature, this study, and unpublished data from various sources. A phylogeny was constructed using molecular and morphological phylogenies from the literature, and analysed using conventional and phylogenetically independent methods. The conventional analysis found significant differences in the scaling exponents of BMR of captive-raised and wild-caught birds. However the phylogenetically independent method showed non-significant differences between these two groups. Conventional analysis of differences between parrots and all other birds yielded significant differences between these two groups, with parrots having significantly higher BMRs than other birds. Again the phylogenetically independent analysis found non-significant differences between these VII two groups. A test of homogeneity of variance between these two groups found significant differences between the variances ofthe two groups, probably due to disparity in sample size and range of body sizes. The conventional and phylogenetically independent tests for differences between captive-raised and wild-caught parrots yielded non-significant results, suggesting that the parrots are not subject to the phenotypic adjustments postulated for all other birds. The lack of significant differences between captive-raised and wild-caught parrots suggests that the analyses of differing habitat type for African and Australian parrots is indeed valid.

Description

Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2006.

Keywords

Parrots., Thermobiology., Desert ecology., Birds--Arid regions., Parrots--Ecology., Parrots--Physiology., Parrots--Africa., Parrots--Australia., Lovebirds--Africa., Neophema--Australia., Birds--Physiology., Captive wild birds., Basal metabolism., Theses--Zoology.

Citation

DOI