• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School Mathematics, Statistics and Computer Science
    • Applied Mathematics
    • Masters Degrees (Applied Mathematics)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School Mathematics, Statistics and Computer Science
    • Applied Mathematics
    • Masters Degrees (Applied Mathematics)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Distance measures in graphs and subgraphs.

    Thumbnail
    View/Open
    Swart_S_Christine_1996.pdf (5.152Mb)
    Date
    1996
    Author
    Swart, Christine Scott.
    Metadata
    Show full item record
    Abstract
    In this thesis we investigate how the modification of a graph affects various distance measures. The questions considered arise in the study of how the efficiency of communications networks is affected by the loss of links or nodes. In a graph C, the distance between two vertices is the length of a shortest path between them. The eccentricity of a vertex v is the maximum distance from v to any vertex in C. The radius of C is the minimum eccentricity of a vertex, and the diameter of C is the maximum eccentricity of a vertex. The distance of C is defined as the sum of the distances between all unordered pairs of vertices. We investigate, for each of the parameters radius, diameter and distance of a graph C, the effects on the parameter when a vertex or edge is removed or an edge is added, or C is replaced by a spanning tree in which the parameter is as low as possible. We find the maximum possible change in the parameter due to such modifications. In addition, we consider the cases where the removed vertex or edge is one for which the parameter is minimised after deletion. We also investigate graphs which are critical with respect to the radius or diameter, in any of the following senses: the parameter increases when any edge is deleted, decreases when any edge is added, increases when any vertex is removed, or decreases when any vertex is removed.
    URI
    http://hdl.handle.net/10413/5141
    Collections
    • Masters Degrees (Applied Mathematics) [70]

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV