• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School Mathematics, Statistics and Computer Science
    • Applied Mathematics
    • Doctoral Degrees (Applied Mathematics)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School Mathematics, Statistics and Computer Science
    • Applied Mathematics
    • Doctoral Degrees (Applied Mathematics)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Partial exchangeability and related topics.

    Thumbnail
    View/Open
    North_Elizabeth_Delia_1991.pdf (3.939Mb)
    Date
    1991
    Author
    North, Delia Elizabeth.
    Metadata
    Show full item record
    Abstract
    Partial exchangeability is the fundamental building block in the subjective approach to the probability of multi-type sequences which replaces the independence concept of the objective theory. The aim of this thesis is to present some theory for partially exchangeable sequences of random variables based on well-known results for exchangeable sequences. The reader is introduced to the concepts of partially exchangeable events, partially exchangeable sequences of random variables and partially exchangeable o-fields, followed by some properties of partially exchangeable sequences of random variables. Extending de Finetti's representation theorem for exchangeable random variables to hold for multi-type sequences, we obtain the following result to be used throughout the thesis: There exists a o-field, conditional upon which, an infinite partially exchangeable sequence of random variables behaves like an independent sequence of random variables, identically distributed within types. Posing (i) a stronger requirement (spherical symmetry) and (ii) a weaker requirement (the selection property) than partial exchangeability on the infinite multi-type sequence of random variables, we obtain results related to de Finetti's representation theorem for partially exchangeable sequences of random variables. Regarding partially exchangeable sequences as mixtures of independent and identically distributed (within types) sequences, we (i) give three possible expressions for the directed random measures of the partially exchangeable sequence and (ii) look at three possible expressions for the o-field mentioned in de Finetti's representation theorem. By manipulating random measures and using de Finetti's representation theorem, we point out some concrete ways of constructing partially exchangeable sequences. The main result of this thesis follows by extending de Finetti's represen. tation theorem in conjunction with the Chatterji principle to obtain the following result: Given any a.s. limit theorem for multi-type sequences of independent random variables, identically distributed within types, there exists an analogous theorem satisfied by all partially exchangeable sequences and by all sub-subsequences of some subsequence of an arbitrary dependent infinite multi-type sequence of random variables, tightly distributed within types. We finally give some limit theorems for partially exchangeable sequences of random variables, some of which follow from the above mentioned result.
    URI
    http://hdl.handle.net/10413/5681
    Collections
    • Doctoral Degrees (Applied Mathematics) [60]

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV