• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School Mathematics, Statistics and Computer Science
    • Computer Science
    • Masters Degrees (Computer Science)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School Mathematics, Statistics and Computer Science
    • Computer Science
    • Masters Degrees (Computer Science)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    On case representation and indexing in a case-based reasoning system for waste management.

    Thumbnail
    View/Open
    Thesis. (7.693Mb)
    Date
    1997
    Author
    Wortmann, Karl Lyndon.
    Metadata
    Show full item record
    Abstract
    Case-Based Reasoning is a fairly new Artificial Intelligence technique which makes use of past experience as the basis for solving new problems. Typically, a case-based reasoning system stores actual past problems and solutions in memory as cases. Due to its ability to reason from actual experience and to save solved problems and thus learn automatically, case-based reasoning has been found to be applicable to domains for which techniques such as rule-based reasoning have traditionally not been well-suited, such as experience-rich, unstructured domains. This applicability has led to it becoming a viable new artificial intelligence topic from both a research and application perspective. This dissertation concentrates on researching and implementing indexing techniques for casebased reasoning. Case representation is researched as a requirement for implementation of indexing techniques, and pre-transportation decision making for hazardous waste handling is used as the domain for applying and testing the techniques. The field of case-based reasoning was covered in general. Case representation and indexing were researched in detail. A single case representation scheme was designed and implemented. Five indexing techniques were designed, implemented and tested. Their effectiveness is assessed in relation to each other, to other reasoners and implications for their use as the basis for a case-based reasoning intelligent decision support system for pre-transportation decision making for hazardous waste handling are briefly assessed.
    URI
    http://hdl.handle.net/10413/5761
    Collections
    • Masters Degrees (Computer Science) [79]

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV