Browsing Doctoral Degrees (Applied Mathematics) by Subject "Stars."
Now showing items 1-5 of 5
-
Differential equations for relativistic radiating stars.
(2013)We consider radiating spherical stars in general relativity when they are conformally flat, geodesic with shear, and accelerating, expanding and shearing. We study the junction conditions relating the pressure to the ... -
Exact models of compact stars with equations of state.
(2013)We study exact solutions to the Einstein-Maxwell system of equations and relate them to compact objects. It is well known that there are substantial analytic difficulties in the modelling of self-gravitating, static fluid ... -
Relativistic radiating stars with generalised atmospheres.
(2010)In this dissertation we construct radiating models for dense compact stars in relativistic astrophysics. We first utilise the standard Santos (1985) junction condition to model Euclidean stars. By making use of the ... -
Thermal evolution of radiation spheres undergoing dissipative gravitational collapse.
(2014)In this study we investigate the physics of a relativistic radiating star undergoing dissipative collapse in the form of a radial heat flux. Our treatment clearly demonstrates how the presence of shear affects the collapse ...