• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School Mathematics, Statistics and Computer Science
    • Statistics
    • Masters Degrees (Statistics)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School Mathematics, Statistics and Computer Science
    • Statistics
    • Masters Degrees (Statistics)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Spatial analysis and efficiency of systematic designs in intercropping experiments.

    Thumbnail
    View/Open
    Thesis (5.315Mb)
    Date
    2002
    Author
    Wandiembe, Symon Peter.
    Metadata
    Show full item record
    Abstract
    In studies involving intercropping plant populations, the main interest is to locate the position of the maximum response or to study the response pattern. Such studies normally require many plant population levels. Thus, designs such as spacing systematic designs that minimise experimental land area are desired. Randomised block designs may not perform well as they allow few population levels which may not span the maximum or enable exploration of other features of the response surface. However, lack of complete randomisation in systematic designs may imply spatial variability (largescale and small-scale variations i.e. trend and spatial dependence) in observations. There is no correct statistical method laid out for data analysis from such designs. Given that spacing systematic designs are not well explored in literature, the main thrusts of this study are two fold; namely, to explore the use of spatial modelling techniques in analysing and modelling data from systematic designs, and to evaluate the efficiency of systematic designs used in intercropping experiments. Three classes of models for trend and error modelling are explored/introduced. These include spatial linear mixed models, semi-parametric mixed models and beta-hat models incorporating spatial variability. The reliability and precision of these methods are demonstrated. Relative efficiency of systematic designs to completely randomised design are evaluated. The analysis of data from systematic designs is shown be easily implemented. Measures of efficiency that include <pp directed measures (A and E criteria), D1 and DB efficiencies for regression parameters, and power are used. Systematic designs are shown to be efficient; on average 72% for A and E- efficiencies and 93% for D1 and DB efficiencies. Overall, these results suggest that systematic designs are suitable and reliable for intercropping plant population studies.
    URI
    http://hdl.handle.net/10413/8037
    Collections
    • Masters Degrees (Statistics) [87]

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV