Mitigation techniques through spatial diversity combining and relay-assisted technology in a turbulence impaired and misaligned free space optical channel.
Date
2018
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
In recent times, spectrum resource scarcity in Radio Frequency (RF) systems is one of the
biggest and prime issues in the area of wireless communications. Owing to the cost of
spectrum, increase in the bandwidth allocation as alternative solution, employed in the recent
past, does no longer offer an effective means to fulfilling high demand in higher data rates.
Consequently, Free Space Optical (FSO) communication systems has received considerable
attention in the research community as an attractive means among other popular solutions to
offering high bandwidth and high capacity compared to conventional RF systems. In
addition, FSO systems have positive features which include license-free operation, cheap and
ease of deployment, immunity to interference, high security, etc. Thus, FSO systems have
been favoured in many areas especially, as a viable solution for the last-mile connectivity
problem and a potential candidate for heterogeneous wireless backhaul network. With these
attractive features, however, FSO systems are weather-dependent wireless channels.
Therefore, it is usually susceptible to atmospheric induced turbulence, pointing error and
attenuation under adverse weather conditions which impose severe challenges on the system
performance and transmission reliability. Thus, before widespread deployment of the system
will be possible, promising mitigation techniques need to be found to address these problems.
In this thesis, the performance of spatial diversity combining and relay-assisted techniques
with Spatial Modulation (SM) as viable mitigating tools to overcome the problem of
atmospheric channel impairments along the FSO communication system link is studied.
Firstly, the performance analysis of a heterodyne FSO-SM system with different diversity
combiners such as Maximum Ratio Combining (MRC), Equal Gain Combining (EGC) and
Selection Combining (SC) under the influence of lognormal and Gamma-Gamma
atmospheric-induced turbulence fading is presented. A theoretical framework for the system
error is provided by deriving the Average Pairwise Error Probability (APEP) expression for
each diversity scheme under study and union bounding technique is applied to obtain their
Average Bit Error Rate (ABER). Under the influence of Gamma-Gamma turbulence, an
APEP expression is obtained through a generalized infinite power series expansion approach
and the system performance is further enhanced by convolutional coding technique.
Furthermore, the performance of proposed system under the combined effect of misalignment
and Gamma-Gamma turbulence fading is also studied using the same mathematical approach.
Moreover, the performance analysis of relay-assisted dual-hop heterodyne FSO-SM system
with diversity combiners over a Gamma-Gamma atmospheric turbulence channel using
Decode-and-Forward (DF) relay and Amplify-and-Forward (AF) relay protocols also is
presented. Under DF dual-hop FSO system, power series expansion of the modified Bessel
function is used to derive the closed-form expression for the end-to-end APEP expressions
for each of the combiners under study over Gamma-Gamma channel, and a tight upper bound
on the ABER per hop is given. Thus, the overall end-to-end ABER for the dual-hop FSO
system is then evaluated. Under AF dual-hop FSO system, the statistical characteristics of AF
relay in terms of Moment Generating Function (MGF), Probability Density Function (PDF)
and Cumulative Distribution Function (CDF) are derived for the combined Gamma-Gamma
turbulence and/or pointing error distributions channel in terms of Meijer-G function. Based
on these expressions, the APEP for each of the under studied combiners is determined and the
ABER for the system is given by using union bounding technique. By utilizing the derived
ABER expressions, the effective capacity for the considered system is then obtained.
Furthermore, the performance of a dual-hop heterodyne FSO-SM asymmetric RF/FSO
relaying system with MRC as mitigation tools at the destination is evaluated. The RF link
experiences Nakagami-m distribution and FSO link is subjected to Gamma-Gamma
distribution with and/or without pointing error. The MGF of the system equivalent SNR is
derived using the CDF of the system equivalent SNR. Utilizing the MGF, the APEP for the
system is then obtained and the ABER for the system is determined.
Finally, owing to the slow nature of the FSO channel, the Block Error Rate (BLER)
performance of FSO Subcarrier Intensity Modulation (SIM) system with spatial diversity
combiners employing Binary Phase Shift Keying (BPSK) modulation over Gamma-Gamma
atmospheric turbulence with and without pointing error is studied. The channel PDF for MRC
and EGC by using power series expansion of the modified Bessel function is derived.
Through this, the BLER closed-form expressions for the combiners under study are obtained.
Description
Doctor of Philosophy in Electronic Engineering. University of KwaZulu-Natal, Durban, 2018.
Keywords
Theses - Electronic Engineering.