Measurement of the temperature dependence of the Buckingham effect (electric-field-gradient-induced birefringence) in gases
Date
2009
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The aim of this research project was to assemble an apparatus to measure the
electric quadrupole moments of gas molecules using the technique of electricfield-
gradient-induced birefringence, or the Buckingham effect. Comprehensive
research by various workers in the field has shown that this technique
provides the only direct means of obtaining the quadrupole moment of a
molecule.
Theory has shown that the most accurate determination of the electric quadrupole
moment is through a study of the temperature dependence of the effect. This
not only allows for the quadrupole moment to be obtained but also enables
the temperature-independent quadrupole hyperpolarisability term to be extracted.
Both the quadrupole moment and the hyperpolarisabilty provide
valuable information in a variety of applications, including intermolecular
forces, electrostatic potentials and non-linear optical phenomena.
This thesis fully describes the apparatus used in these measurements, including a description of the custom built oven that allowed for measurements
to be performed over a temperature range spanning from 25"C up to
200"C. Results for the quadrupole moments and quadrupole hyperpolarisabilities
of carbon dioxide, carbon monoxide, nitrous oxide and hydrogen are
presented, together with a quadrupole moment for carbonyl sulphide from
room-temperature measurements. Wherever possible, the results of this work
are compared to previously published experimental and theoretical data.
Description
Thesis (PhD) - University of KwaZulu-Natal, Pietermaritzburg, 2009.
Keywords
Quadrupole moments., Molecular physics., Electric quadrupoles., Scientific apparatus and instruments., Theses--Physics.