Repository logo
 

Aspects of distance and domination in graphs.

Thumbnail Image

Date

1995

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The first half of this thesis deals with an aspect of domination; more specifically, we investigate the vertex integrity of n-distance-domination in a graph, i.e., the extent to which n-distance-domination properties of a graph are preserved by the deletion of vertices, as well as the following: Let G be a connected graph of order p and let oi- S s;:; V(G). An S-n-distance-dominating set in G is a set D s;:; V(G) such that each vertex in S is n-distance-dominated by a vertex in D. The size of a smallest S-n-dominating set in G is denoted by I'n(S, G). If S satisfies I'n(S, G) = I'n(G), then S is called an n-distance-domination-forcing set of G, and the cardinality of a smallest n-distance-domination-forcing set of G is denoted by On(G). We investigate the value of On(G) for various graphs G, and we characterize graphs G for which On(G) achieves its lowest value, namely, I'n(G), and, for n = 1, its highest value, namely, p(G). A corresponding parameter, 1](G), defined by replacing the concept of n-distance-domination of vertices (above) by the concept of the covering of edges is also investigated. For k E {a, 1, ... ,rad(G)}, the set S is said to be a k-radius-forcing set if, for each v E V(G), there exists Vi E S with dG(v, Vi) ~ k. The cardinality of a smallest k-radius-forcing set of G is called the k-radius-forcing number of G and is denoted by Pk(G). We investigate the value of Prad(G) for various classes of graphs G, and we characterize graphs G for which Prad(G) and Pk(G) achieve specified values. We show that the problem of determining Pk(G) is NP-complete, study the sequences (Po(G),Pl(G),P2(G), ... ,Prad(G)(G)), and we investigate the relationship between Prad(G)(G) and Prad(G)(G + e), and between Prad(G)(G + e) and the connectivity of G, for an edge e of the complement of G. Finally, we characterize integral triples representing realizable values of the triples b,i,p), b,l't,i), b,l'c,p), b,l't,p) and b,l't,l'c) for a graph.

Description

Thesis (Ph.D.-Mathematics and Applied Mathematics)-University of Natal, 1995.

Keywords

Theses--Mathematics., Graph theory.

Citation

DOI