Repository logo
 

Crop suitability mapping for underutilized crops in South Africa.

dc.contributor.advisorMabhaudhi, Tafadzwanashe.
dc.contributor.advisorChimonyo, Vimbayi Grace Petrova.
dc.contributor.advisorKunz, Richard Peter.
dc.contributor.authorMugiyo, Hillary.
dc.date.accessioned2023-06-15T10:12:34Z
dc.date.available2023-06-15T10:12:34Z
dc.date.created2021
dc.date.issued2022
dc.descriptionDoctoral Degree. University of KwaZulu-Natal, Pietermaritzburg.en_US
dc.description.abstractSeveral neglected and underutilised species (NUS) provide solutions to climate change and create a Zero Hunger world, the Sustainable Development Goal 2. However, limited information describing their agronomy, water use, and evaluation of potential growing zones to improve sustainable production has previously been cited as the bottlenecks to their promotion in South Africa's (SA) marginal areas. Therefore, the thesis outlines a series of assessments aimed at fitting NUS in the dryland farming systems of SA. The study successfully mapped current and possible future suitable zones for NUS in South Africa. Initially, the study conducted a scoping review of land suitability methods. After that, South African bioclimatic zones with high rainfall variability and water scarcity were mapped. Using the analytic hierarchy process (AHP), the suitability for selected NUS sorghum (Sorghum bicolor), cowpea (Vigna unguiculata), amaranth and taro (Colocasia esculenta) was mapped. The future growing zones were used using the MaxEnt model. This was only done for KwaZulu Natal. Lastly, the study assessed management strategies such as optimum planting date, plant density, row spacing, and fertiliser inputs for sorghum. The review classified LSA methods reported in articles as traditional (26.6%) and modern (63.4%). Modern approaches, including multicriteria decision-making (MCDM) methods such as AHP (14.9%) and fuzzy methods (12.9%), crop simulation models (9.9%) and machine-learning-related methods (25.7%), are gaining popularity over traditional methods. The review provided the basis and justification for land suitability analysis (LSA) methods to map potential growing zones of NUS. The review concluded that there is no consensus on the most robust method for assessing NUS's current and future suitability. South Africa is a water-scarce country, and rainfall is undoubtedly the dominating factor determining crop production, especially in marginal areas where irrigation facilities are limited for smallholder farmers. Based on these challenges, there is a need to characterise bioclimatic zones in SA that can be qualified under water stress and with high rainfall variation. Mapping high-risk agricultural drought areas were achieved by using the Vegetation Drought Response Index (VegDRI), a hybrid drought index that integrates the Standardized Precipitation Index (SPI), Temperature Condition Index (TCI), and the Vegetation Condition Index (VCI). In NUS production, land use and land classification address questions such as “where”, “why”, and “when” a particular crop is grown within particular agroecology. The study mapped the current and future suitable zones for NUS. The current land suitability assessment was done using Analytic Hierarchy Process (AHP) using multidisciplinary factors, and the future was done through a machine learning model Maxent. The maps developed can contribute to evidence-based and site-specific recommendations for NUS and their mainstreaming. Several NUS are hypothesised to be suitable in dry regions, but the future suitability remains unknown. The future distribution of NUS was modelled based on three representative concentration pathways (RCPs 2.6, 4.5 and 8.5) for the years between 2030 and 2070 using the maximum entropy (MaxEnt) model. The analysis showed a 4.2-25% increase under S1-S3 for sorghum, cowpea, and amaranth growing areas from 2030 to 2070. Across all RCPs, taro is predicted to decrease by 0.3-18 % under S3 from 2050 to 2070 for all three RCPs. Finally, the crop model was used to integrate genotype, environment and management to develop one of the NUS-sorghum production guidelines in KwaZulu-Natal, South Africa. Best sorghum management practices were identified using the Sensitivity Analysis and generalised likelihood uncertainty estimation (GLUE) tools in DSSAT. The best sorghum management is identified by an optimisation procedure that selects the optimum sowing time and planting density-targeting 51,100, 68,200, 102,500, 205,000 and 300 000 plants ha-1 and fertiliser application rate (75 and 100 kg ha-1) with maximum long-term mean yield. The NUS are suitable for drought-prone areas, making them ideal for marginalised farming systems to enhance food and nutrition security.en_US
dc.identifier.urihttps://researchspace.ukzn.ac.za/handle/10413/21553
dc.language.isoenen_US
dc.subject.otherNeglected and underutilised species (NUS).en_US
dc.subject.otherLand suitability.en_US
dc.subject.otherCrop modelling.en_US
dc.subject.otherFood security.en_US
dc.subject.otherClimate change.en_US
dc.titleCrop suitability mapping for underutilized crops in South Africa.en_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mugiyo_Hillary_2022.pdf
Size:
8.48 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.64 KB
Format:
Item-specific license agreed upon to submission
Description: