Repository logo
 

The use of Unmanned Aerial Vehicles (UAV) remotely sensed data and machine learning techniques to predict maize yield.

dc.contributor.advisorOdindi, John Odhiambo.
dc.contributor.advisorMutanga, Onisimo.
dc.contributor.advisorMatongera, Trylee Nyasha.
dc.contributor.authorDlamini, Celuxolo Michal.
dc.date.accessioned2024-06-27T09:34:35Z
dc.date.available2024-06-27T09:34:35Z
dc.date.created2024
dc.date.issued2024
dc.descriptionMasters Degree. University of KwaZulu-Natal, Pietermaritzburg.
dc.description.abstractAbstract available in PDF.
dc.identifier.doihttps://doi.org/10.29086/10413/23174
dc.identifier.urihttps://hdl.handle.net/10413/23174
dc.language.isoen
dc.subject.otherSmall-scale farming systems.
dc.subject.otherAbove-ground biomass.
dc.titleThe use of Unmanned Aerial Vehicles (UAV) remotely sensed data and machine learning techniques to predict maize yield.
dc.typeThesis

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dlamini_Celuxolo_Michal_2024.pdf
Size:
4.84 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.64 KB
Format:
Item-specific license agreed upon to submission
Description: