Repository logo
 

Double-diffusive convection flow in a porous medium saturated with a nanofluid.

Thumbnail Image

Date

2014

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

In this work, we studied heat and mass transfer in a nanofluid flow over a stretching sheet. Fluid flow in different flow geometries was studied and a co-ordinate transformation was used to transform the governing equations into non-dimensional non-similar boundary layer equations. These equations were then solved numerically using both established and recent techniques such as the spectral relaxation and spectral quasi-linearization methods. Numerical solutions for the heat transfer, mass transfer and skin friction coefficients have been presented for different system parameters, such as heat generation, Soret and Dufour effects, chemical reaction, thermal radiation influence, the local Grashof number, Prandtl number, Eckert number, Hartmann number and the Schmidt number. The dependency of the skin friction, heat and mass transfer coefficients on these parameters has been quantified and discussed. The accuracy, and validity of the spectral relaxation and spectral quasi-linearization methods has been established.

Description

Keywords

Nanofluids., Fluids., Mathematics., Theses--Mathematics.

Citation

DOI