Repository logo
 

Using educational data mining to predict sub-Saharan African science, technology, engineering, and mathematics students’ academic performance: a systematic review.

dc.contributor.advisorGovender, Irene.
dc.contributor.advisorQuilling, Rosemary Diane.
dc.contributor.authorMhlongo, Langelihle Lucky.
dc.date.accessioned2024-05-09T10:47:27Z
dc.date.available2024-05-09T10:47:27Z
dc.date.created2023
dc.date.issued2023
dc.descriptionMasters Degree. University of KwaZulu-Natal, Pietermaritzburg.
dc.description.abstractAbstract available in PDF.
dc.identifier.doihttps://doi.org/10.29086/10413/22989
dc.identifier.urihttps://hdl.handle.net/10413/22989
dc.language.isoen
dc.rightsCC0 1.0 Universalen
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/
dc.subject.otherEducational data mining (EDM).
dc.subject.otherData mining.
dc.subject.otherEDM in educational systems.
dc.subject.otherEffectiveness of EDM.
dc.subject.otherFactors Examined in EDM.
dc.titleUsing educational data mining to predict sub-Saharan African science, technology, engineering, and mathematics students’ academic performance: a systematic review.
dc.typeThesis
local.sdgSDG4

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mhlongo_Langelihle_Lucky_2023.pdf
Size:
4.55 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.64 KB
Format:
Item-specific license agreed upon to submission
Description: