Repository logo
 

Investigations into the upgrading of transmission lines from HVAC to HVDC.

dc.contributor.advisorIjumba, Nelson Mutatina.
dc.contributor.advisorMuftic, Dzevad.
dc.contributor.advisorBritten, Anthony C.
dc.contributor.authorNaidoo, Pathmanathan.
dc.date.accessioned2011-01-20T10:21:17Z
dc.date.available2011-01-20T10:21:17Z
dc.date.created2007
dc.date.issued2007
dc.descriptionThesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2007.en_US
dc.description.abstractEmanating from the proceedings of CIGRE 2004, a new idea for higher power transmission by recycling and up rating high voltage alternating current transmission lines for high voltage direct current application was presented at the HYDC working group session. To date, there is no known application of the idea. Globally, transmission congestion, power transfer bottlenecks with restricted and limited power transfers and unobtainable servitudes challenge electric power utilities. The literature review shows that since the early sixties, several authors have studied this proposal. However, no applications were done. Admittedly, early HYDC technology was troubled by problems with multi-terminal designs, external insulation breakdown in the presence of DC stress and mercury valve rectifiers struggled with arc backs. To date, power electronic and external insulation technology has grown and matured for confident application both in point to point and multi-terminal application. The economic costs of introducing the DC technology are also more affordable given reducing prices due to higher volume of purchases. With promising developments in insulation and power electronic technology and driven by South Africa's surging growth in the consumption of electrical energy; the subject of upgrading HYAC transmission for HYDC application is revisited. For the research, the emphasis is beyond FACTS and towards a solution that could develop into a new supergrid that could overlay the existing national grid. Thus, the solution is prepared specifically for the case of recycling existing assets for higher power transfers. The working environment is defined by the difficulty in acquiring new powerline servitudes, transmission congestion in complex networks, the need for electrical islands within complex interconnections, and the need for enhanced power system stability and to promote new ancillary services energy management. The focus of this research study was to determine the technical feasibility of upgrading of existing HYAC circuits for HYDC application. It is assumed that the transmission line will remain as is in structure, layout and mechanical design. The changing of external line insulators using live line technology is an accepted modification to the original HYAC line, if required. From the study, we conclude that not all HYAC lines are recommended for upgrade to HYDe. We introduce boundary conditions as a first step towards checking on the suitability of the proposed upgrade from HVAC to HYDC mode. Emanating from this study, the first paper published introduced the initial boundary conditions as being only those lines where the "unused gap" between surge impedance loading and conductor current carrying capability is appreciable and large; generally three to four times surge impedance loading. In the case where the unused gap is the smallest or negligible, then we do nothing. In between, where the unused gap is about two to three times the surge impedance loading, then we can consider active or passive compensation using the HVAC FACTS technology options as proposed by EPRl. Having determined the candidate transmission line configuration for the proposed upgrade to HYDC application, we select the DC operating voltage as based on the voltage withstand capability of external insulation for varying environmental conditions. In addition, the DC voltage will generate allowable electrical fields and corona effects within and outside the transmission servitude. The optimum DC operating voltage would satisfy the conditions of minimum transmission power losses and volt drop for the case of maximum power transfers; within the limits of electrical fields and corona effects.en_US
dc.identifier.urihttp://hdl.handle.net/10413/2224
dc.language.isoenen_US
dc.subjectElectric power transmission.en_US
dc.subjectHigh voltage direct current.en_US
dc.subjectTheses--Electrical engineering.en_US
dc.titleInvestigations into the upgrading of transmission lines from HVAC to HVDC.en_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Naidoo_Pathmanathan_2007.pdf
Size:
7.32 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.86 KB
Format:
Item-specific license agreed upon to submission
Description: