Repository logo
 

Carbon dioxide encapsulation in methane hydrates.

dc.contributor.advisorNaidoo, Paramespri.
dc.contributor.advisorBabaee, Saeideh.
dc.contributor.advisorMoodley, Kuveneshan.
dc.contributor.authorNdlovu, Phakamile.
dc.date.accessioned2023-06-12T13:18:17Z
dc.date.available2023-06-12T13:18:17Z
dc.date.created2022
dc.date.issued2022
dc.descriptionDoctoral Degree. University of KwaZulu-Natal, Durban.en_US
dc.description.abstractCoal mining and petroleum refining processes face extreme pressure under climate change and global warming threats. Hence alternative sustainable and renewable energy sources must be made available for the rising energy demands. Natural gas found in permafrost and seabed areas in the form of gas hydrates possess vast amounts of low-carbon methane gas, which can replace fossil-based energy sources. The capture and storage of carbon dioxide gas in natural gas hydrate beds with the release of methane gas is a sustainable route under intense research. This study investigates the methane-carbon dioxide (CH4-CO2) replacement reaction mechanisms and the improvement of the process using different techniques, namely, additives, secondary gas, and thermal stimulation. Firstly, the gas hydrate dissociation measurements for the former gases utilized in the study were performed. This was followed by kinetic measurements with nanoparticles (aluminum oxide, copper oxide, and graphene nanoplatelets) and chemical additives (zinc oxide powder, graphite powder, and magnesium nitrate hexahydrate crystals) in the presence of sodium dodecyl sulfate (SDS) to affect kinetic or thermodynamic improvement in hydrate formation. The kinetic parameters investigated were induction time, hydrate storage capacity, water consumed in hydrate formation, fugacity of the gaseous phase, and the ratio of gas consumed to moles of water. Graphene nanoplatelets were selected for replacement reaction based on promising results obtained from the kinetic studies. The CH4-CO2 replacement process was performed in a 52 cm3 equilibrium cell using deionized water and nanoparticles. Also, a new experimental setup with a 300 cm3 reaction vessel was designed and assembled for CH4-CO2 replacement in the presence of synthetic silica sand. The results from kinetic studies showed an improvement in the hydrate formation kinetics due to the presence of nanoparticles. The CO2 hydrate formation kinetics obtained a maximum storage capacity of 51 (v/v), with 1.2 wt.% graphene nanoplatelets which also produced a maximum water conversion of 25%. When nanoparticles were added, the induction time for CO2 hydrate in deionized water was reduced from 9 minutes to less than one minute. Graphite powder with a concentration of 1.2 wt.% had the highest rate of gas uptake of 0.0024 (mol of gas/ mol of water. min). In CH4 kinetics, the induction time was reduced from 18 minutes with deionized water to less than one minute due to addition of nanoparticles. A maximum storage capacity of 28.5 (v/v), water-to-hydrate conversion of 13.09%, rate of gas uptake of 0.0089 (mol of gas/ mol of water. min), and gas consumption of 0.0238 moles were obtained with 0.1 wt.% CuO + 0.05 wt.% SDS. Also, CH4-CO2 replacement measurements showed that an 80 mol% N2/20 mol% CO2 gas mixture yielded a CH4 replacement efficiency of 17.04% at a temperature of 274.77 K and pressure of 5.34 MPa. The highest amount of CO2 sequestrated was 57.03%, and 28.77% was the highest CH4 replacement efficiency. These results were obtained using pressurized CO2 with application of thermal stimulation at a temperature of 275.90 K and pressure of 5.66 MPa. In the replacement reaction with silica sand, the maximum amount of CH4 replaced was 37.49% with the pressurized CO2 at a pressure of 7.01 MPa and temperature of 276.43 K. Applying thermal stimulation and adding secondary gas (N2) improved CO2 sequestration from 51.73% to 76.63%. These outcomes are vital in applying hydrates in gas storage and CO2 sequestration.en_US
dc.identifier.urihttps://researchspace.ukzn.ac.za/handle/10413/21538
dc.language.isoenen_US
dc.subject.otherCoal mining.en_US
dc.subject.otherRenewable energy sources.en_US
dc.subject.otherZinc oxide powder.en_US
dc.subject.otherHexahydrate crystals.en_US
dc.subject.otherGraphene nanoplatelets.en_US
dc.titleCarbon dioxide encapsulation in methane hydrates.en_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ndlovu_Phakamile_2022.pdf
Size:
17.55 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.64 KB
Format:
Item-specific license agreed upon to submission
Description: