Fabrication and characterization of metal oxide nanostructured thin film for photovoltaic application.
Date
2018
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This study focused on fabrication and characterization of nanostructured metal oxide
heterojunction solar cells for photovoltaic application. The study involved experimental
fabrication of the device and modelling and theoretical validation of the fabricated device. The
laboratory experiment was carried out by fabricating and characterizing nanostructured metal
oxide thin film based solar cells using chemical spray pyrolysis and magnetron sputtering
deposition techniques. The study included device design, materials tuning, process development,
device characterization, device simulation, device reliability testing, and device circuit
demonstration. The study covers the whole course of the device lithography and development.
The spray pyrolysis method was used for depositing nickel oxide (NiO) thin films. Scanning
electron microscope (SEM), energy dispersive X-ray powder diffraction (XRD), and Fourier
transform infrared microscopy (FTIR) were used to characterize the films and four-point probe for
the final device. Experimental optimization was conducted on the films with a focus on predeposition,
deposition and post-deposition. The optimized result was used to fabricate a metal
oxide NiO/TiO2 P-N heterojunction solar cell using spray pyrolysis and magnetron sputtering
techniques. The optoelectronic properties of the heterojunction were determined. The fabricated
solar cell exhibited 16.8 mA for the short circuit current, 350 mV open circuit voltage, 0.39 fill
factor and conversion efficiency of 2.30 % under 100 mW/cm2 illumination.
The result obtained from the experiment was compared and evaluated with the simulated results.
The theoretical understanding of the device was modelled and theoretically validated. Theoretical
understanding of the solar cell was established and thereafter the fabricated device modelled using
solar cell analysis programs (SCAPxD). The working points used for the modelling included a
temperature of 350 oC, illumination of 100mW/cm2, the voltage range of 0 volts to 1.5 volts. The
output gave filled factor (FF) of 0.38 % which validated the experimental results.
This study is a boosts in the quest to develop low-cost, environmentally friendly and sustainable
solar cells materials and deposition method especially in developing and low-income countries
that are experiencing electricity shortage using nanostructured metal oxide.
Description
Doctoral Degrees (Mechanical Engineering). University of KwaZulu-Natal. Durban, 2018.