• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School Mathematics, Statistics and Computer Science
    • Applied Mathematics
    • Doctoral Degrees (Applied Mathematics)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School Mathematics, Statistics and Computer Science
    • Applied Mathematics
    • Doctoral Degrees (Applied Mathematics)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Probing the nature of dark energy with 21-cm intensity mapping.

    Thumbnail
    View/Open
    Yohana_Elimboto_Mwiki_2020.pdf (4.257Mb)
    Date
    2020
    Author
    Yohana, Elimboto Mwiki.
    Metadata
    Show full item record
    Abstract
    Two approaches to measure the BAOs (baryon acoustic oscillations) with optical and radio telescopes, namely; galaxy redshift and intensity mapping (IM) surveys have been introduced and discussed in the literature. Among the two methods, the galaxy redshift survey has been used to great effect and is based on the detection and survey of millions of individual galaxies and measuring their redshifts by comparing templates of the spectral energy distributions of the light emitted from the galaxies with optical lines. IM is novel but a robust approach that focuses on surveys of extremely large volumes of galaxies without resolving each individual galaxy and can efficiently probe scales over redshift ranges inaccessible to the current galaxy redshift surveys. However, the IM survey has promisingly shown to have better overall sensitivity to the BAOs than the galaxy redshift survey but has a number of serious issues to be quantified. The most obvious of these issues is the presence of foreground contaminants from the Milky Way galaxy and extragalactic point sources which strongly dominate the neutral hydrogen (Hi) signal of our interest. Under this study, we are interested to realize the IM approach, pave the pathway, and optimize the scientific outputs of future radio experiments. We, therefore, carry out simulations and present forecasts of the cosmological constraints by employing Hi IM technique with three near-term radio telescopes by assuming 1 year of observational time. The telescopes considered here are Five-hundred-meter Aperture Spherical radio Telescope (FAST), BAOs In Neutral Gas Observations (BINGO), and Square Kilometre Array Phase I (SKA-I) single-dish experiments. We further forecast the combined constraints of the three radio telescopes with Planck measurements. In order to tackle the foreground challenge, we develop strategies to model various sky components and employ an approach to clean them from our Milky Way galaxy and extragalactic point sources by considering a typical single-dish radio telescope. Particularly, the Principal Component Analysis foreground separation approach considered can indeed recover the cosmological Hi signal to high precision. We show that, although the approach may face some challenges, it can be fully realized on the selected range of angular scales.
    URI
    https://researchspace.ukzn.ac.za/handle/10413/20717
    Collections
    • Doctoral Degrees (Applied Mathematics) [61]

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV