• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School Mathematics, Statistics and Computer Science
    • Applied Mathematics
    • Masters Degrees (Applied Mathematics)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School Mathematics, Statistics and Computer Science
    • Applied Mathematics
    • Masters Degrees (Applied Mathematics)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    On Stephani universes.

    Thumbnail
    View/Open
    Thesis (3.014Mb)
    Date
    1992
    Author
    Moopanar, Selvandren.
    Metadata
    Show full item record
    Abstract
    In this dissertation we study conformal symmetries in the Stephani universe which is a generalisation of the Robertson-Walker models. The kinematics and dynamics of the Stephani universe are discussed. The conformal Killing vector equation for the Stephani metric is integrated to obtain the general solution subject to integrability conditions that restrict the metric functions. Explicit forms are obtained for the conformal Killing vector as well as the conformal factor . There are three categories of solution. The solution may be categorized in terms of the metric functions k and R. As the case kR - kR = 0 is the most complicated, we provide all the details of the integration procedure. We write the solution in compact vector notation. As the case k = 0 is simple, we only state the solution without any details. In this case we exhibit a conformal Killing vector normal to hypersurfaces t = constant which is an analogue of a vector in the k = 0 Robertson-Walker spacetimes. The above two cases contain the conformal Killing vectors of Robertson-Walker spacetimes. For the last case in - kR = 0, k =I 0 we provide an outline of the integration process. This case gives conformal Killing vectors which do not reduce to those of RobertsonWalker spacetimes. A number of the calculations performed in finding the solution of the conformal Killing vector equation are extremely difficult to analyse by hand. We therefore utilise the symbolic manipulation capabilities of Mathematica (Ver 2.0) (Wolfram 1991) to assist with calculations.
    URI
    http://hdl.handle.net/10413/8094
    Collections
    • Masters Degrees (Applied Mathematics) [70]

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV