• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School Mathematics, Statistics and Computer Science
    • Applied Mathematics
    • Masters Degrees (Applied Mathematics)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School Mathematics, Statistics and Computer Science
    • Applied Mathematics
    • Masters Degrees (Applied Mathematics)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Solution generating algorithms in general relativity.

    Thumbnail
    View/Open
    Thesis (295.4Kb)
    Date
    2011
    Author
    Krupanandan, Daniel Dhevaprakshum.
    Metadata
    Show full item record
    Abstract
    We conduct a comprehensive investigative review of solution generating algorithms for the Einstein field equations governing the gravitational behaviour of an isolated neutral static spherical distribution of perfect fluid matter. Traditionally, the master field equation generated from the condition of pressure isotropy has been interpreted as a second order ordinary differential equation. However, since the pioneering work of Wyman (1949) it was observed that more success can be enjoyed by regarding the equation as a first order linear differential equation. There was a resurgence of the ideas of Wyman in 2000 and various researchers have been able to generate complete solutions to the field equations up to certain integrations. These have been accomplished by working in Schwarzschild (curvature) coordinates, isotropic coordinates, area coordinates and a coordinate system written in terms of the redshift parameter. We have utilised Durgapal–Banerjee (1983) coordinates and produced a new algorithm. The algorithm is used to generate new classes of perfect fluid solutions as well as to regain familiar particular solutions reported in the literature. We find that our solution is well behaved according to elementary physical requirements. The pressure vanishes for a certain radius and this establishes the boundary of the distribution. Additionally the pressure and energy density are both positive inside the radius. The energy conditions are shown to be satisfied and it is particularly pleasing to have the causality criterion satisfied to ensure that the speed of light is not exceeded by the speed of sound. We also report some new solutions using the algorithms proposed by Lake (2006).
    URI
    http://hdl.handle.net/10413/9766
    Collections
    • Masters Degrees (Applied Mathematics) [70]

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV