Repository logo

Network intrusion detection using genetic programming.

Thumbnail Image



Journal Title

Journal ISSN

Volume Title



Network intrusion detection is a real-world problem that involves detecting intrusions on a computer network. Detecting whether a network connection is intrusive or non-intrusive is essentially a binary classification problem. However, the type of intrusive connections can be categorised into a number of network attack classes and the task of associating an intrusion to a particular network type is multiclass classification. A number of artificial intelligence techniques have been used for network intrusion detection including Evolutionary Algorithms. This thesis investigates the application of evolutionary algorithms namely, Genetic Programming (GP), Grammatical Evolution (GE) and Multi-Expression Programming (MEP) in the network intrusion detection domain. Grammatical evolution and multi-expression programming are considered to be variants of GP. In this thesis, a comparison of the effectiveness of classifiers evolved by the three EAs within the network intrusion detection domain is performed. The comparison is performed on the publicly available KDD99 dataset. Furthermore, the effectiveness of a number of fitness functions is evaluated. From the results obtained, standard genetic programming performs better than grammatical evolution and multi-expression programming. The findings indicate that binary classifiers evolved using standard genetic programming outperformed classifiers evolved using grammatical evolution and multi-expression programming. For evolving multiclass classifiers different fitness functions used produced classifiers with different characteristics resulting in some classifiers achieving higher detection rates for specific network intrusion attacks as compared to other intrusion attacks. The findings indicate that classifiers evolved using multi-expression programming and genetic programming achieved high detection rates as compared to classifiers evolved using grammatical evolution.


Masters Degree. University of KwaZulu-Natal, Pietermaritzburg.