Repository logo
 

A study of high voltage direct current conductor corona in a purpose built corona cage.

Thumbnail Image

Date

2003

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The main aim of this study was concerned with the design and commissioning of a corona cage, which could be used under Direct Current (DC) conditions. The cage was designed based on empirical formulas and equations as well as electric field simulations. The designed cage was then fabricated. The commissioning of the cage was undertaken in the High Voltage Direct Current (HVDC) laboratory at the University of Durban - Westville (UDW). Tests to determine the effects of a silicone coating as well as wind on the corona performance of conductors were undertaken. The tests were done in order to determine ways of improving the corona performance of conductors under HVDC potential. The tests were carried out using various conductor surface conditions. The wind tests were made possible by using a powerful fan. A silicone coating was also used to determine the effects that it would have in mitigation of corona activity on HVDC conductors. The conductors were tested without the coating, with half of their length coated and then fully coated. Results showed that the effect of wind on corona generation in a corona cage is minimal. The effect of the silicone coating was that it increased the corona currents measured in the corona cage. The conductors with no coating generated the lowest currents, the half coated conductors generated the second highest measured currents and the fully coated conductors generated the most corona. Analysis of the increased currents showed that the increase in corona currents due to the silicone coating could be attributed to three factors. Firstly the coating caused an increase in conductor to cage capacitance. Secondly, partial discharges could have occurred in the silicone due to microscopic air particles and lastly, the increase in corona currents could be ascribed to the effect of the boundary conditions on the boundary between the conductor and the coating.

Description

Thesis (M.Sc.)-University of Durban-Westville, 2003.

Keywords

High voltage direct current., Electrical engineering., Theses--Electrical engineering.

Citation

DOI