Browsing by Author "Ukoba, Kingsley Ogheneovo."
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Item Experimental optimization of nanostructured nickel oxide deposited by spray pyrolysis for solar cells application.(Research India Publications., 2018) Ukoba, Kingsley Ogheneovo.; Eloka-Eboka, Andrew Chukwudum.; Inambao, Freddie Liswaniso.Abstract available in PDF file.Item Experimental optimization of nanostructured nickel oxide deposited by spray pyrolysis for solar cells application.(Research India Publications., 2018) Ukoba, Kingsley Ogheneovo.; Inambao, Freddie Liswaniso.; Eloka-Eboka, Andrew Chukwudum.This study focused on the experimental optimization of nanostructured nickel oxide (NiO) for solar cell applications. The optimization procedure involved the variation of the precursor concentrations of nickel acetate with attendant measurement of the properties of nickel oxide films. The films were spray deposited on glass substrate. Nickel acetate precursor was used at a substrate temperature of 350 oC. Precursor concentrations were: 0.025 M, 0.05 M, 0.075 M and 0.1 M respectively. The surface morphology revealed nanostructured film with particles densely distributed across the substrate’s surface. The films are homogeneous, smooth, well adherent and devoid of pinholes and cracks. The morphology became grainier as the precursor solution increased. Elemental composition exposes the presence of Ni and O elements in NiO film. Oxygen concentration decreases as precursor solution increases. The film structural property reveals that deposited NiO film has an amorphous structure at 0.025 M while the other concentrations are polycrystalline in nature with cubic structure. X-ray diffractometry (XRD) further reveals that the intensity of NiO films increases with increased molarity. Preferred orientation was along the (1 1 1) peak with minor intensity along the (2 0 0) peak. XRD patterns have peak diffraction at (2θ = 37 o and 43 o) for the (1 1 1) and (2 0 0) planes respectively, and 64 o for the (2 2 0) plane for 0.1 M. Crystallite size was obtained at 63.77 nm maximum. Film thickness increased with increasing precursor concentration from 6.277 μm to 11.57 μm. Film micro strain was observed to have compression for all precursor solutions. Optical studies showed that transmittance decreased with increasing concentration from 80 % to 71 %. Optical band gap energy was between 3.94 eV to 3.38 eV as precursor concentration increased, revealing the effect of varied concentrations on NiO film properties. Optimized results obtained are precursors in the development of low cost, efficient, durable solar cell fabrication for developing countries.Item Fabrication and characterization of metal oxide nanostructured thin film for photovoltaic application.(2018) Ukoba, Kingsley Ogheneovo.; Inambao, Freddie Liswaniso.This study focused on fabrication and characterization of nanostructured metal oxide heterojunction solar cells for photovoltaic application. The study involved experimental fabrication of the device and modelling and theoretical validation of the fabricated device. The laboratory experiment was carried out by fabricating and characterizing nanostructured metal oxide thin film based solar cells using chemical spray pyrolysis and magnetron sputtering deposition techniques. The study included device design, materials tuning, process development, device characterization, device simulation, device reliability testing, and device circuit demonstration. The study covers the whole course of the device lithography and development. The spray pyrolysis method was used for depositing nickel oxide (NiO) thin films. Scanning electron microscope (SEM), energy dispersive X-ray powder diffraction (XRD), and Fourier transform infrared microscopy (FTIR) were used to characterize the films and four-point probe for the final device. Experimental optimization was conducted on the films with a focus on predeposition, deposition and post-deposition. The optimized result was used to fabricate a metal oxide NiO/TiO2 P-N heterojunction solar cell using spray pyrolysis and magnetron sputtering techniques. The optoelectronic properties of the heterojunction were determined. The fabricated solar cell exhibited 16.8 mA for the short circuit current, 350 mV open circuit voltage, 0.39 fill factor and conversion efficiency of 2.30 % under 100 mW/cm2 illumination. The result obtained from the experiment was compared and evaluated with the simulated results. The theoretical understanding of the device was modelled and theoretically validated. Theoretical understanding of the solar cell was established and thereafter the fabricated device modelled using solar cell analysis programs (SCAPxD). The working points used for the modelling included a temperature of 350 oC, illumination of 100mW/cm2, the voltage range of 0 volts to 1.5 volts. The output gave filled factor (FF) of 0.38 % which validated the experimental results. This study is a boosts in the quest to develop low-cost, environmentally friendly and sustainable solar cells materials and deposition method especially in developing and low-income countries that are experiencing electricity shortage using nanostructured metal oxide.Item Fabrication of affordable and sustainable solar cells using NiO/TiO2 P-N heterojunction.(Hindawi., 2018) Ukoba, Kingsley Ogheneovo.; Inambao, Freddie Liswaniso.; Eloka-Eboka, Andrew Chukwudum.The need for affordable, clean, efficient, and sustainable solar cells informed this study. Metal oxide TiO²/NiO heterojunction solar cells were fabricated using the spray pyrolysis technique. The optoelectronic properties of the heterojunction were determined. The fabricated solar cells exhibit a short-circuit current of 16.8 mA, open-circuit voltage of 350 mV, fill factor of 0.39, and conversion efficiency of 2.30% under 100mW/cm² illumination. This study will help advance the course for the development of low-cost, environmentally friendly, and sustainable solar cell materials from metal oxides.Item Influence of concentration on properties of spray deposited nickel oxide films for solar cells.(Elsevier., 2017) Ukoba, Kingsley Ogheneovo.; Eloka-Eboka, Andrew Chukwudum.; Inambao, Freddie Liswaniso.Spray pyrolysis technique was used to deposit various concentration of nickel oxide films on glass substrate. The Effect of varying precursor concentration on elemental, morphological and structural properties was investigated on the deposited NiO films. Nickel (II) acetate tetrahydrate precursor was used at substrate temperature of 350 oC. Precursor concentrations were 0.025, 0.05, 0.075 and 0.1 M. Scanning Electron Microscope (SEM) surface morphology revealed nanostructured films with particles densely distributed across substrates surface. Increased in surface grains was observed as the precursor solution increased. Elemental composition of NiO films revealed presence of Ni and O element. There was reduction in oxygen concentration as precursor solution increases. Amorphous structure was observed at concentration of 0.025 M while polycrystalline with cubic structure was observed at higher concentrations. Preferred orientation was along (1 1 1) peak with small intensity along (2 0 0) peak. XRD patterns have peak diffraction at (2θ = 37 o and 43 o) for (1 1 1) and (2 0 0) planes respectively and 64 o for (2 2 0) plane for 0.1 M. Film thickness grew with increase in precursor concentration. Film micro strain was observed to have compression for all precursor solution conspicuously revealing the effect of varied concentration on NiO films propertiesItem Modeling of fabricated NiO/TiO2 P-N heterojunction solar cells.(Research India Publications., 2018) Ukoba, Kingsley Ogheneovo.; Inambao, Freddie Liswaniso.This paper reports modelling and theoretical validation of a fabricated NiO/TiO2 P-N heterojunction solar cell. The solar cell equations were modelled and thereafter theoretical validation of the fabricated solar cells was performed. Modelling tools were used to validate the influence of NiO material features such as deposition temperature, voltage and defect densities on the performances of an ITO/TiO2/NiO heterojunction solar cell structure. The working points used included a temperature of 350 oC, illumination of 1000 W/m2 using an AM1.5 lamp, with voltage range of 0 to 1.5 volts. The output gave Voc of 0.1445 V, Jsc of 247.959195E-6 mA/cm2 and FF of 37.87 % and Voc 0.7056 and Jsc 28.366911 mA/cm2 when both contacts were added. This opens a new frontier for modelling of metal oxide based thin film solar cells especially NiO thin film solar cells. These findings enhance the quest to develop affordable and sustainable energy and encourage further research in solar cell technologies in low-income countries.Item Review of solar energy inclusion in Africa : a case study of Nigeria.(2017) Ukoba, Kingsley Ogheneovo.; Eloka-Eboka, Andrew Chukwudum.; Inambao, Freddie Liswaniso.This work reviews solar energy inclusion in Africa using Nigeria as a case study. It reviewed studies made on viability, challenges and solutions associated with making solar energy a viable energy option in Nigeria. The study highlighted data on current industry capacity of solar energy, installed PV capacity, and solar energy application distribution. It sheds light on solar energy initiatives and projects in Nigeria and solar energy capacity development in Nigeria. Success stories of solar energy and solar cell fabrication in Nigeria are presented. Existing government policies and legislation are discussed. The authors consider the challenges faced and the current and future prospects of solar power in Nigeria, and make recommendations regarding the speedy and seamless inclusion of solar energy in Nigeria and Africa as a whole.Item Solar cells and global warming reduction.(Research India Publications., 2018) Ukoba, Kingsley Ogheneovo.; Inambao, Freddie Liswaniso.This study proposes one way of addressing the issue of climate change and pollution using solar cells. The quality of life in developing and low-income countries is on the decline because of air pollution. Energy has a role to play in the quality of life and reduction of air pollution especially in those countries. A reduction in the usage of fossil fuels and biomass in these countries will help decrease the air pollution and emissions generated by such energy sources. About 1 million solar lanterns are capable of reducing greenhouse gas emissions by over 30 000 tons. The role of eco-friendly solar cells in elimination of air pollution cannot be overstated.